吸收 发表于 2025-3-21 17:09:11
书目名称Orthogonal Designs影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0704701<br><br> <br><br>书目名称Orthogonal Designs影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0704701<br><br> <br><br>书目名称Orthogonal Designs网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0704701<br><br> <br><br>书目名称Orthogonal Designs网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0704701<br><br> <br><br>书目名称Orthogonal Designs被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0704701<br><br> <br><br>书目名称Orthogonal Designs被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0704701<br><br> <br><br>书目名称Orthogonal Designs年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0704701<br><br> <br><br>书目名称Orthogonal Designs年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0704701<br><br> <br><br>书目名称Orthogonal Designs读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0704701<br><br> <br><br>书目名称Orthogonal Designs读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0704701<br><br> <br><br>陈腐思想 发表于 2025-3-21 20:41:13
http://reply.papertrans.cn/71/7048/704701/704701_2.pngPLIC 发表于 2025-3-22 01:41:49
http://reply.papertrans.cn/71/7048/704701/704701_3.png单纯 发表于 2025-3-22 04:46:10
http://reply.papertrans.cn/71/7048/704701/704701_4.png摊位 发表于 2025-3-22 09:26:35
https://doi.org/10.1007/978-3-319-59032-5Combinatorics; Hurwitz-Radon algebras; Hadamard matrices; Mathematical computation; Sequences; matrix the虚弱的神经 发表于 2025-3-22 16:01:28
Jennifer SeberryProvides a unique overview of the subject.Provides insights into some of the current communications coding theories.Can be considered as the foundation of a completely new area of discrete mathematics集聚成团 发表于 2025-3-22 17:33:26
Book 2017with basic theory, this book develops the algebra and combinatorics to create new communications modes. Intended primarily for researchers, it is also useful for graduate students wanting to understand some of the current communications coding theories..Trabeculoplasty 发表于 2025-3-22 22:04:39
Orthogonal Designs,An orthogonal design of order ., type ., denoted, ., . positive integers, is an . matrix ., with entries from . (the . commuting indeterminates) satisfying.Microgram 发表于 2025-3-23 02:40:07
Some Algebraic and Combinatorial Non-existence Results,In this chapter we intend to explain some easily obtained non-existence theorems for orthogonal designs. Many of these results will be generalized in later chapters, but we feel that these simpler special cases will give the reader an idea as to how the subject developed and what sorts of propositions might be expected.ambivalence 发表于 2025-3-23 07:29:05
http://reply.papertrans.cn/71/7048/704701/704701_10.png