GLAZE 发表于 2025-3-21 19:22:30
书目名称Optical Remote Sensing影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0702663<br><br> <br><br>书目名称Optical Remote Sensing影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0702663<br><br> <br><br>书目名称Optical Remote Sensing网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0702663<br><br> <br><br>书目名称Optical Remote Sensing网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0702663<br><br> <br><br>书目名称Optical Remote Sensing被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0702663<br><br> <br><br>书目名称Optical Remote Sensing被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0702663<br><br> <br><br>书目名称Optical Remote Sensing年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0702663<br><br> <br><br>书目名称Optical Remote Sensing年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0702663<br><br> <br><br>书目名称Optical Remote Sensing读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0702663<br><br> <br><br>书目名称Optical Remote Sensing读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0702663<br><br> <br><br>原始 发表于 2025-3-21 20:18:02
Hyperspectral Data Compression Tradeoff, is the size of the data: as a third dimension is added, the amount of data increases dramatically making the compression necessary at different steps of the processing chain. Also different properties are required at different stages of the processing chain with variable tradeoff. Second, the diffe会犯错误 发表于 2025-3-22 01:47:51
http://reply.papertrans.cn/71/7027/702663/702663_3.pngLime石灰 发表于 2025-3-22 06:58:13
Integrated Sensing and Processing for Hyperspectral Imagery,relevant to the application. Broadly, integrated sensing and processing (ISP) considers algorithms that are integrated with the collection of data. That is, traditional sensor development tries to come up with the “best” sensor in terms of SNR, resolution, data rates, integration time, and so forth,音乐等 发表于 2025-3-22 10:52:12
http://reply.papertrans.cn/71/7027/702663/702663_5.png新手 发表于 2025-3-22 15:56:27
An Evaluation of Visualization Techniques for Remotely Sensed Hyperspectral Imagery,ily render the desired information at arbitrary levels of detail. This chapter discusses user studies on several approaches for representing the information contained in hyperspectral information. In particular, we compared four visualization methods: grayscale side-by-side display (GRAY), hard visu广口瓶 发表于 2025-3-22 18:17:34
http://reply.papertrans.cn/71/7027/702663/702663_7.png圆桶 发表于 2025-3-22 21:35:04
The Evolution of the Morphological Profile: from Panchromatic to Hyperspectral Images,largely proved to be a powerful tool able to model the spatial information (e.g., contextual relations) of the image by extracting structural features (e.g., size, geometry, etc.) from the objects present in the scene. The MP processes an input image with a sequence of progressively coarser filters.固执点好 发表于 2025-3-23 03:57:47
Decision Fusion of Multiple Classifiers for Vegetation Mapping and Monitoring Applications by Meansmote sensing imagery. It is very normal that different classification schemes yield slightly different results for different classes. This effect is even more prominent in vegetation mapping applications due to the inconsistent spectral signatures of the vegetation classes. We study the possibility悬崖 发表于 2025-3-23 08:07:45
A Review of Kernel Methods in Remote Sensing Data Analysis,stent and well-founded theoretical framework for developing nonlinear techniques and have useful properties when dealing with low number of (potentially high dimensional) training samples, the presence of heterogenous multimodalities, and different noise sources in the data. These properties are par