雀斑 发表于 2025-3-25 06:22:29
http://reply.papertrans.cn/71/7014/701304/701304_21.pngheadway 发表于 2025-3-25 08:55:42
l uncertainty quantification metric, i.e. the Bhattacharyya distance, instead of the typical Euclidian distance. The overall approach is demonstrated by solving the model updating sub-problem of the NASA uncertainty quantification challenge. The demonstration provides a clear comparison between perfParallel 发表于 2025-3-25 11:59:04
http://reply.papertrans.cn/71/7014/701304/701304_23.png火海 发表于 2025-3-25 19:05:18
http://reply.papertrans.cn/71/7014/701304/701304_24.pngAffiliation 发表于 2025-3-25 20:36:45
http://reply.papertrans.cn/71/7014/701304/701304_25.pnginstill 发表于 2025-3-26 01:36:38
http://reply.papertrans.cn/71/7014/701304/701304_26.png换话题 发表于 2025-3-26 06:43:04
http://reply.papertrans.cn/71/7014/701304/701304_27.png人类学家 发表于 2025-3-26 11:48:52
ctical aspects of this innovative, multi-disciplinary approach, as well as future perspectives, this unique book is a must-read for all orthopedists, radiologists, sports physicians and physiotherapist wanting to gain insights into this promising field. .978-3-030-84236-9978-3-030-84234-5MANIA 发表于 2025-3-26 15:23:52
http://reply.papertrans.cn/71/7014/701304/701304_29.pngCalculus 发表于 2025-3-26 17:01:49
ar on the very foundations of probability theory. In addition to providing an invaluable reference for researchers, the book should therefore also be of interest to a wide ra978-3-030-82595-9Series ISSN 0071-1136 Series E-ISSN 2197-5655