MIFF 发表于 2025-3-21 17:54:38
书目名称On the Problem of Plateau / Subharmonic Functions影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0701268<br><br> <br><br>书目名称On the Problem of Plateau / Subharmonic Functions影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0701268<br><br> <br><br>书目名称On the Problem of Plateau / Subharmonic Functions网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0701268<br><br> <br><br>书目名称On the Problem of Plateau / Subharmonic Functions网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0701268<br><br> <br><br>书目名称On the Problem of Plateau / Subharmonic Functions被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0701268<br><br> <br><br>书目名称On the Problem of Plateau / Subharmonic Functions被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0701268<br><br> <br><br>书目名称On the Problem of Plateau / Subharmonic Functions年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0701268<br><br> <br><br>书目名称On the Problem of Plateau / Subharmonic Functions年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0701268<br><br> <br><br>书目名称On the Problem of Plateau / Subharmonic Functions读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0701268<br><br> <br><br>书目名称On the Problem of Plateau / Subharmonic Functions读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0701268<br><br> <br><br>终点 发表于 2025-3-21 21:57:48
https://doi.org/10.1007/978-3-642-65236-3Functions; Plateausches Problem; Problem of Plateau; Subharmonische Funktion; function; minimum; subharmon不吉祥的女人 发表于 2025-3-22 02:04:24
http://reply.papertrans.cn/71/7013/701268/701268_3.png连累 发表于 2025-3-22 05:55:10
Representation of subharmonic functions in terms of potentials,suitable for our purposes. Let v becontinuous in a domain G together with its derivatives of the firstand second order. Take a region G’ + B’ in G, such that B’ consistsof a finite number of non-intersecting smooth . curves.Palpitation 发表于 2025-3-22 11:22:04
http://reply.papertrans.cn/71/7013/701268/701268_5.png运动性 发表于 2025-3-22 16:05:08
http://reply.papertrans.cn/71/7013/701268/701268_6.png混乱生活 发表于 2025-3-22 17:47:43
Minimal surfaces in the small,Given a surface.it is convenient to use vector notation and write simply .where . denotes the vector with components x (u, v) , y (u, v) ,z(u, v).Carbon-Monoxide 发表于 2025-3-23 00:44:47
The non-parametric problem,The problem of . in the non-parametric form asksfor a minimal surface bounded by a given curve and represented as awhole by an equation of the form z = z (x, y) .Invigorate 发表于 2025-3-23 02:14:32
http://reply.papertrans.cn/71/7013/701268/701268_9.png协奏曲 发表于 2025-3-23 07:09:48
The simultaneous problem in the parametric form. Generalizations,This problem has been investigated in the following statement.Given, in the .-space, a . curve Γ*, consider all the continuoussurfaces, of the type of the circular disc (see I.8), bounded by Γ*, andsuppose that the greatest lower bound a (Γ*) of their areas is finite... (see III.5), ..