无情 发表于 2025-3-23 12:08:17
The non-parametric problem, form . = .. The exact statement of the problem is as follows. Given, in the .-plane, a Jordan curve ., and a continuous function . of the point . varying on .. Determine a function . which is continuous in and on ., which has continuous derivatives of the first and second orders inside of ., which美色花钱 发表于 2025-3-23 15:04:36
http://reply.papertrans.cn/71/7013/701267/701267_12.png低三下四之人 发表于 2025-3-23 18:46:20
http://reply.papertrans.cn/71/7013/701267/701267_13.pngdisrupt 发表于 2025-3-24 01:07:39
http://reply.papertrans.cn/71/7013/701267/701267_14.png边缘带来墨水 发表于 2025-3-24 05:35:24
http://reply.papertrans.cn/71/7013/701267/701267_15.png减震 发表于 2025-3-24 09:19:21
Introduction, smallest possible length. The problem of determining and investigating a surface with given boundary and with a smallest possible area might then be considered as the most immediate two-dimensional variation problem.acolyte 发表于 2025-3-24 11:59:08
http://reply.papertrans.cn/71/7013/701267/701267_17.pngevanescent 发表于 2025-3-24 16:42:59
http://reply.papertrans.cn/71/7013/701267/701267_18.pngBAIT 发表于 2025-3-24 20:30:34
The simultaneous problem in the parametric form. Generalizations,This problem has been investigated in the following statement. Given, in the .-space, a Jordan curve .*, consider all the continuous surfaces, of the type of the circular disc (see I.8), bounded by .*, and suppose that the greatest lower bound a(.*) of their areas is finite. .. (see III.5), .?. u....In-Situ 发表于 2025-3-25 02:53:26
Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folgehttp://image.papertrans.cn/o/image/701267.jpg