FETUS 发表于 2025-3-21 16:31:01
书目名称On Artin‘s Conjecture for Odd 2-dimensional Representations影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0700947<br><br> <br><br>书目名称On Artin‘s Conjecture for Odd 2-dimensional Representations影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0700947<br><br> <br><br>书目名称On Artin‘s Conjecture for Odd 2-dimensional Representations网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0700947<br><br> <br><br>书目名称On Artin‘s Conjecture for Odd 2-dimensional Representations网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0700947<br><br> <br><br>书目名称On Artin‘s Conjecture for Odd 2-dimensional Representations被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0700947<br><br> <br><br>书目名称On Artin‘s Conjecture for Odd 2-dimensional Representations被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0700947<br><br> <br><br>书目名称On Artin‘s Conjecture for Odd 2-dimensional Representations年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0700947<br><br> <br><br>书目名称On Artin‘s Conjecture for Odd 2-dimensional Representations年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0700947<br><br> <br><br>书目名称On Artin‘s Conjecture for Odd 2-dimensional Representations读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0700947<br><br> <br><br>书目名称On Artin‘s Conjecture for Odd 2-dimensional Representations读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0700947<br><br> <br><br>珐琅 发表于 2025-3-21 23:09:38
https://doi.org/10.1007/BFb0074106Artin‘s conjecture for L-series; Cusp forms; Galois group; Modular symbols; Volume; algorithms; constructiupstart 发表于 2025-3-22 03:38:45
978-3-540-58387-5Springer-Verlag Berlin Heidelberg 1994未成熟 发表于 2025-3-22 06:23:36
http://reply.papertrans.cn/71/7010/700947/700947_4.pngpaltry 发表于 2025-3-22 09:19:36
http://reply.papertrans.cn/71/7010/700947/700947_5.png蕨类 发表于 2025-3-22 14:21:51
http://reply.papertrans.cn/71/7010/700947/700947_6.pngarabesque 发表于 2025-3-22 19:14:28
Book 1994a fairly wide range. To do this, one has to determine the number of all representations with given Artin conductor and determinant and to compute the dimension of a corresponding space of cusp forms of weight 1 which is done by exploiting the explicit knowledge of the operation of Hecke operators onAXIOM 发表于 2025-3-22 23:07:35
0075-8434 ations in a fairly wide range. To do this, one has to determine the number of all representations with given Artin conductor and determinant and to compute the dimension of a corresponding space of cusp forms of weight 1 which is done by exploiting the explicit knowledge of the operation of Hecke opBURSA 发表于 2025-3-23 03:26:33
A. Geometrical construction of 2-dimensional galois representations of A5-type. B. On the realisati of . such that . is Galois over . with group <. (corresponding to a 2-dimensional Galois representation of . with determinant of order 2), and if . is not of a special exceptional type, then there exists a curve . of genus 2 defined over . such that . can be described by means of coordinates of 5-torsion points of ..馆长 发表于 2025-3-23 07:30:36
A. Geometrical construction of 2-dimensional galois representations of A5-type. B. On the realisatif the 5-torsion points of a suitable elliptic curve .. It is well known that there exists such a curve . defined over . if and only if there exists a quadratic overfield . of . such that . is Galois over . with group <.. This corresponds to a 2-dimensional Galois representation of the Galois group .