jungle
发表于 2025-3-28 15:54:45
Otto Rauhe exists m ∈M. (S.) such that a=∝xdm(x). B) for every a ∈ Γ there is precisely one m ∈ M.(..) such that a=∝xdm(x), if and only if Γ is a lattice..The condition (.) implies that Γ is proper (Γ∩−Γ=(o)). Any weakly complete proper convex cone in a quasi-complete conuclear space satisfies condition (.).
Meager
发表于 2025-3-28 20:52:18
Otto Rauhe exists m ∈M. (S.) such that a=∝xdm(x). B) for every a ∈ Γ there is precisely one m ∈ M.(..) such that a=∝xdm(x), if and only if Γ is a lattice..The condition (.) implies that Γ is proper (Γ∩−Γ=(o)). Any weakly complete proper convex cone in a quasi-complete conuclear space satisfies condition (.).
acclimate
发表于 2025-3-29 02:17:29
Otto Rauhe exists m ∈M. (S.) such that a=∝xdm(x). B) for every a ∈ Γ there is precisely one m ∈ M.(..) such that a=∝xdm(x), if and only if Γ is a lattice..The condition (.) implies that Γ is proper (Γ∩−Γ=(o)). Any weakly complete proper convex cone in a quasi-complete conuclear space satisfies condition (.).
flex336
发表于 2025-3-29 04:42:50
Otto Rauhe exists m ∈M. (S.) such that a=∝xdm(x). B) for every a ∈ Γ there is precisely one m ∈ M.(..) such that a=∝xdm(x), if and only if Γ is a lattice..The condition (.) implies that Γ is proper (Γ∩−Γ=(o)). Any weakly complete proper convex cone in a quasi-complete conuclear space satisfies condition (.).
枯燥
发表于 2025-3-29 10:57:00
http://reply.papertrans.cn/71/7003/700293/700293_45.png
Anticoagulant
发表于 2025-3-29 12:14:03
Otto Rauhe exists m ∈M. (S.) such that a=∝xdm(x). B) for every a ∈ Γ there is precisely one m ∈ M.(..) such that a=∝xdm(x), if and only if Γ is a lattice..The condition (.) implies that Γ is proper (Γ∩−Γ=(o)). Any weakly complete proper convex cone in a quasi-complete conuclear space satisfies condition (.).
barium-study
发表于 2025-3-29 18:38:14
http://reply.papertrans.cn/71/7003/700293/700293_47.png
公共汽车
发表于 2025-3-29 20:11:58
Otto Rauhe exists m ∈M. (S.) such that a=∝xdm(x). B) for every a ∈ Γ there is precisely one m ∈ M.(..) such that a=∝xdm(x), if and only if Γ is a lattice..The condition (.) implies that Γ is proper (Γ∩−Γ=(o)). Any weakly complete proper convex cone in a quasi-complete conuclear space satisfies condition (.).
合群
发表于 2025-3-30 00:27:51
Otto Rauhe exists m ∈M. (S.) such that a=∝xdm(x). B) for every a ∈ Γ there is precisely one m ∈ M.(..) such that a=∝xdm(x), if and only if Γ is a lattice..The condition (.) implies that Γ is proper (Γ∩−Γ=(o)). Any weakly complete proper convex cone in a quasi-complete conuclear space satisfies condition (.).
无能的人
发表于 2025-3-30 06:20:57
http://reply.papertrans.cn/71/7003/700293/700293_50.png