fumble 发表于 2025-3-21 19:14:14
书目名称Nonlinear Structures & Systems, Vol. 1影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0669682<br><br> <br><br>书目名称Nonlinear Structures & Systems, Vol. 1影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0669682<br><br> <br><br>书目名称Nonlinear Structures & Systems, Vol. 1网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0669682<br><br> <br><br>书目名称Nonlinear Structures & Systems, Vol. 1网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0669682<br><br> <br><br>书目名称Nonlinear Structures & Systems, Vol. 1被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0669682<br><br> <br><br>书目名称Nonlinear Structures & Systems, Vol. 1被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0669682<br><br> <br><br>书目名称Nonlinear Structures & Systems, Vol. 1年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0669682<br><br> <br><br>书目名称Nonlinear Structures & Systems, Vol. 1年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0669682<br><br> <br><br>书目名称Nonlinear Structures & Systems, Vol. 1读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0669682<br><br> <br><br>书目名称Nonlinear Structures & Systems, Vol. 1读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0669682<br><br> <br><br>Hiatus 发表于 2025-3-21 20:53:23
http://reply.papertrans.cn/67/6697/669682/669682_2.png巨头 发表于 2025-3-22 00:41:23
http://reply.papertrans.cn/67/6697/669682/669682_3.png阐明 发表于 2025-3-22 07:34:11
http://reply.papertrans.cn/67/6697/669682/669682_4.png贫穷地活 发表于 2025-3-22 11:20:06
Explanation for Oscillating Backbone Curves Based on Fractional Spectral Submanifolds,umerical simulations. Oscillations become more apparent, as the initial condition of decaying trajectory moves farther away from the primary SSM, which is indeed incapable of reproducing this phenomenon. Conversely, a new class of manifolds, fractional (or secondary) SSMs, offer a clear explanation for this observation.INTER 发表于 2025-3-22 14:16:03
http://reply.papertrans.cn/67/6697/669682/669682_6.pngharangue 发表于 2025-3-22 19:22:46
http://reply.papertrans.cn/67/6697/669682/669682_7.pngOmniscient 发表于 2025-3-22 21:41:38
A Tutorial on Nonlinear Model Order Reduction,od are (i) the change of coordinates and (ii) the reduced dynamics in the new coordinate system. Specifically, nonlinear methods differ from linear-based techniques, as they rely on a nonlinear change of coordinates rather than the addition of new vectors to enlarge the linear projection basis.Surgeon 发表于 2025-3-23 04:57:10
http://reply.papertrans.cn/67/6697/669682/669682_9.png他很灵活 发表于 2025-3-23 06:42:53
Conference Proceedings of the Society for Experimental Mechanics Serieshttp://image.papertrans.cn/n/image/669682.jpg