懒惰民族 发表于 2025-3-30 10:29:44

http://reply.papertrans.cn/67/6693/669245/669245_51.png

PAD416 发表于 2025-3-30 15:33:09

http://reply.papertrans.cn/67/6693/669245/669245_52.png

天真 发表于 2025-3-30 18:13:12

http://reply.papertrans.cn/67/6693/669245/669245_53.png

轻快带来危险 发表于 2025-3-30 23:13:16

http://reply.papertrans.cn/67/6693/669245/669245_54.png

与野兽博斗者 发表于 2025-3-31 02:22:49

http://reply.papertrans.cn/67/6693/669245/669245_55.png

erythema 发表于 2025-3-31 07:18:37

http://reply.papertrans.cn/67/6693/669245/669245_56.png

Flavouring 发表于 2025-3-31 09:10:46

Superconvergence in Collocation and Implicit Runge-Kutta Methods for Volterra-Type Integral Equatioit Runge-Kutta methods of Pouzet type if the collocation equation is discretized by appropriate numerical quadrature. This paper deals with results on global convergence and (local) superconvergence for these methods, both for equations with regular and with weakly singular kernels. In addition, we

情感脆弱 发表于 2025-3-31 13:47:11

Numerical Treatment of an Integral Equation Originating from a Two-Dimensional Dirichlet Boundary Vdze equation by a pair of equations. Here we consider the numerical implementation of the pair of equations, and we show how the pair may be treated in order to obtain a satisfactory numerical solution. We also consider the effect of the quadrature error on the solution, whereby we get numerical rea
页: 1 2 3 4 5 [6]
查看完整版本: Titlebook: Numerical Treatment of Integral Equations / Numerische Behandlung von Integralgleichungen; Workshop on Numerica J. Albrecht,L. Collatz Book