乌鸦 发表于 2025-3-21 19:51:48

书目名称Numerical Semigroups影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0669167<br><br>        <br><br>书目名称Numerical Semigroups影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0669167<br><br>        <br><br>书目名称Numerical Semigroups网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0669167<br><br>        <br><br>书目名称Numerical Semigroups网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0669167<br><br>        <br><br>书目名称Numerical Semigroups被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0669167<br><br>        <br><br>书目名称Numerical Semigroups被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0669167<br><br>        <br><br>书目名称Numerical Semigroups年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0669167<br><br>        <br><br>书目名称Numerical Semigroups年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0669167<br><br>        <br><br>书目名称Numerical Semigroups读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0669167<br><br>        <br><br>书目名称Numerical Semigroups读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0669167<br><br>        <br><br>

沐浴 发表于 2025-3-21 20:21:02

http://reply.papertrans.cn/67/6692/669167/669167_2.png

COMMA 发表于 2025-3-22 01:06:24

http://reply.papertrans.cn/67/6692/669167/669167_3.png

反叛者 发表于 2025-3-22 07:47:06

Primality in Semigroup Rings,= 1, 2, and . is completely primal if every factor of . is primal. A ring in which every element is (completely) primal is called a pre-Schreier domain and an integrally closed pre-Schreier domain is called a Schreier domain. In this paper, we study (completely) primal elements and shed more light on the Schreier property in semigroup rings.

防水 发表于 2025-3-22 10:40:46

,On Multi-Index Filtrations Associated to Weierstraß Semigroups, fields, with special emphasis on the case of two points. Some hints about the usage of some packages of the computer algebra software . are also given; these are however only valid for curves defined over . with . a prime number.

ACME 发表于 2025-3-22 15:31:55

http://reply.papertrans.cn/67/6692/669167/669167_6.png

Adornment 发表于 2025-3-22 20:43:09

Counting Numerical Semigroups by Genus and Even Gaps via Kunz-Coordinate Vectors,We construct a one-to-one correspondence between a subset of numerical semigroups with genus . and . even gaps and the integer points of a rational polytope. In particular, we give an overview to apply this correspondence to try to decide if the sequence (..) is increasing, where .. denotes the number of numerical semigroups with genus ..

Priapism 发表于 2025-3-22 22:01:58

Patterns on the Numerical Duplication by Their Admissibility Degree,We develop the theory of patterns on numerical semigroups in terms of the admissibility degree. We prove that the Arf pattern induces every strongly admissible pattern, and determine all patterns equivalent to the Arf pattern. We study patterns on the numerical duplication . when . ≫ 0. We also provide a definition of patterns on rings.

Eeg332 发表于 2025-3-23 04:09:11

http://reply.papertrans.cn/67/6692/669167/669167_9.png

高谈阔论 发表于 2025-3-23 08:24:02

http://reply.papertrans.cn/67/6692/669167/669167_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Numerical Semigroups; IMNS 2018 Valentina Barucci,Scott Chapman,Ralf Fröberg Book 2020 The Editor(s) (if applicable) and The Author(s), und