美色花钱 发表于 2025-3-23 13:02:53

http://reply.papertrans.cn/67/6692/669151/669151_11.png

Chagrin 发表于 2025-3-23 16:26:33

Subgradient Projection Algorithm,onal errors are bounded from above by a small positive constant. Moreover, for a known computational error, we find out what an approximate solution can be obtained and how many iterates one needs for this.

Blasphemy 发表于 2025-3-23 22:02:45

http://reply.papertrans.cn/67/6692/669151/669151_13.png

Indecisive 发表于 2025-3-23 23:42:45

1931-6828 tory chapter.Analyzes the gradient projection algorithm for .This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined tak

APEX 发表于 2025-3-24 05:23:50

http://reply.papertrans.cn/67/6692/669151/669151_15.png

Aerophagia 发表于 2025-3-24 08:19:18

http://reply.papertrans.cn/67/6692/669151/669151_16.png

mortuary 发表于 2025-3-24 12:32:37

https://doi.org/10.1007/978-3-319-30921-7nonlinear programming; mathematical programming; proximal point methods; extragradient methods; continuo

Ligneous 发表于 2025-3-24 15:19:19

http://reply.papertrans.cn/67/6692/669151/669151_18.png

modish 发表于 2025-3-24 22:48:11

Numerical Optimization with Computational Errors978-3-319-30921-7Series ISSN 1931-6828 Series E-ISSN 1931-6836

外观 发表于 2025-3-24 23:47:49

Introduction, solution of the problem in the presence of computational errors. We show that the algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a constant. In this section we discuss several algorithms which are studied in the book.
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Numerical Optimization with Computational Errors; Alexander J. Zaslavski Book 2016 Springer International Publishing Switzerland 2016 nonl