琐碎 发表于 2025-3-23 12:11:49
C. Woodford,C. Phillipsläuft die Achse des anschließenden Zwischenhirns (ebenso wie die des Endhirns), die .sche Achse von ‚hinten nach vorne‘. Zum Studium des Mittelhirns sind Schnitte zu bevorzugen, welche senkrecht zur .schen Achse stehen.“infelicitous 发表于 2025-3-23 16:20:53
http://reply.papertrans.cn/67/6692/669128/669128_12.png基因组 发表于 2025-3-23 20:22:01
https://doi.org/10.1007/978-94-007-1366-6Linear programming; Matlab code for numerical methods; Numerical Methods for Engineering; Solving nonli嬉耍 发表于 2025-3-23 22:17:48
C. Woodford,C. PhillipsIn this book numerical methods are presented in problem – solution – discussion order so that underlying theory is inferred naturally from experiment and experience.Teaching approach allows for learniFRAX-tool 发表于 2025-3-24 06:26:16
Basic Matlab,The applicability of Matlab to a wide range of engineering, scientific and mathematical problems. Matlab’s history and universality. The chapter aims to encourage the immediate use of Matlab through examples and exercises. Techniques and skills are illustrated and practised for the end of chapter exercises and general numerical work.责怪 发表于 2025-3-24 07:13:40
Linear Equations,Systems of linear equations and their solution by Gaussian elimination using partial pivoting and iterative refinement. Solving sparse systems more effectively using Gauss–Seidel elimination. Recognising and limiting round-off error.暖昧关系 发表于 2025-3-24 14:16:36
Nonlinear Equations,The bisection method, the rule of false position, the secant method and Newton’s method for the solution of single nonlinear equations. Generalisations to methods for solving systems of nonlinear equations.Wernickes-area 发表于 2025-3-24 15:53:59
http://reply.papertrans.cn/67/6692/669128/669128_18.png救护车 发表于 2025-3-24 20:35:54
Numerical Integration,Numerical methods for estimating definite integrals (also known as quadrature). The trapezium, Simpson’s and Newton–Cotes rules, Gaussian and adaptive quadrature.Diluge 发表于 2025-3-25 01:31:01
Numerical Differentiation,Estimating first and higher derivatives at a given point. Two, three and five point formulae based on neighbouring function values and a method based on Cauchy’s integral formula.