watertight, 发表于 2025-3-23 11:04:56
http://reply.papertrans.cn/67/6691/669003/669003_11.png称赞 发表于 2025-3-23 14:14:39
http://reply.papertrans.cn/67/6691/669003/669003_12.pngPAN 发表于 2025-3-23 19:37:37
http://reply.papertrans.cn/67/6691/669003/669003_13.png极力证明 发表于 2025-3-23 22:48:36
http://reply.papertrans.cn/67/6691/669003/669003_14.png密码 发表于 2025-3-24 03:02:38
http://reply.papertrans.cn/67/6691/669003/669003_15.png缺陷 发表于 2025-3-24 07:23:46
Quadraturrest, Approximation und Chebyshev-Polynome,es and to use more robust methods. One can consider series expansions (Hilbert space, holomorphy). But there are simpler methods, employing polynomials, approximation, grids. In connection with quadrature such methods have been worked out by several authors; we mention Stroud, Locher-Zeller, Riess-J忍受 发表于 2025-3-24 13:45:28
http://reply.papertrans.cn/67/6691/669003/669003_17.pngAmplify 发表于 2025-3-24 14:59:14
Some Reflections on the Euler-Maclaurin Sum Formula,that paper the classical Euler-Maclaurin formula was analysed and generalized to give a variety of quadrature formulae in both one and more than one dimension. In the present contribution a similar approach will be made to investigate . formulae. Due to restrictions on space only the one dimensionalOcclusion 发表于 2025-3-24 19:48:53
A Note on Cubature over a Triangle of a Function Having Specified Singularities,r. where r is the distance of (x,y) from C and x is the distance of (x,y) from AB. In particular we show how to construct rules which are exact for integrand functions p.(x,y)h.(r) where p. and h. are polynomials of degree λ and μ, respectively.大气层 发表于 2025-3-25 02:18:40
http://reply.papertrans.cn/67/6691/669003/669003_20.png