affront 发表于 2025-3-21 17:00:40

书目名称Numerical Ecology with R影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0668983<br><br>        <br><br>书目名称Numerical Ecology with R影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0668983<br><br>        <br><br>书目名称Numerical Ecology with R网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0668983<br><br>        <br><br>书目名称Numerical Ecology with R网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0668983<br><br>        <br><br>书目名称Numerical Ecology with R被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0668983<br><br>        <br><br>书目名称Numerical Ecology with R被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0668983<br><br>        <br><br>书目名称Numerical Ecology with R年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0668983<br><br>        <br><br>书目名称Numerical Ecology with R年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0668983<br><br>        <br><br>书目名称Numerical Ecology with R读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0668983<br><br>        <br><br>书目名称Numerical Ecology with R读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0668983<br><br>        <br><br>

白杨 发表于 2025-3-21 21:40:54

https://doi.org/10.1007/978-1-4419-7976-6R scripts; numerical ecology; practicals

雪崩 发表于 2025-3-22 04:06:12

Daniel Borcard,Francois Gillet,Pierre LegendrePractical guide to Numerical Ecology by leaders of the field.All examples are extensively commented.Complete data sets, functions and scripts are provided.Includes supplementary material:

抒情短诗 发表于 2025-3-22 08:04:13

http://reply.papertrans.cn/67/6690/668983/668983_4.png

WATER 发表于 2025-3-22 09:38:06

http://reply.papertrans.cn/67/6690/668983/668983_5.png

CONE 发表于 2025-3-22 13:07:53

http://reply.papertrans.cn/67/6690/668983/668983_6.png

不能根除 发表于 2025-3-22 17:42:01

http://reply.papertrans.cn/67/6690/668983/668983_7.png

Bridle 发表于 2025-3-22 22:33:00

http://reply.papertrans.cn/67/6690/668983/668983_8.png

割公牛膨胀 发表于 2025-3-23 02:40:32

Daniel Borcard,François Gillet,Pierre Legendre RNN modeling technique is introduced to efficiently determine the training waveform distribution and internal RNN structure during the offline training process. Through two examples it’s demonstrated that the trained time domain neural network model provides fast EM solutions with variable values of the geometrical parameter in the model.

情爱 发表于 2025-3-23 06:40:11

http://reply.papertrans.cn/67/6690/668983/668983_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Numerical Ecology with R; Daniel Borcard,Francois Gillet,Pierre Legendre Book 20111st edition Springer Science+Business Media LLC 2011 R s