Jejunum 发表于 2025-3-21 19:43:58

书目名称Number Theory – Diophantine Problems, Uniform Distribution and Applications影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0668890<br><br>        <br><br>书目名称Number Theory – Diophantine Problems, Uniform Distribution and Applications影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0668890<br><br>        <br><br>书目名称Number Theory – Diophantine Problems, Uniform Distribution and Applications网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0668890<br><br>        <br><br>书目名称Number Theory – Diophantine Problems, Uniform Distribution and Applications网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0668890<br><br>        <br><br>书目名称Number Theory – Diophantine Problems, Uniform Distribution and Applications被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0668890<br><br>        <br><br>书目名称Number Theory – Diophantine Problems, Uniform Distribution and Applications被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0668890<br><br>        <br><br>书目名称Number Theory – Diophantine Problems, Uniform Distribution and Applications年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0668890<br><br>        <br><br>书目名称Number Theory – Diophantine Problems, Uniform Distribution and Applications年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0668890<br><br>        <br><br>书目名称Number Theory – Diophantine Problems, Uniform Distribution and Applications读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0668890<br><br>        <br><br>书目名称Number Theory – Diophantine Problems, Uniform Distribution and Applications读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0668890<br><br>        <br><br>

evaculate 发表于 2025-3-21 22:09:38

http://reply.papertrans.cn/67/6689/668890/668890_2.png

同音 发表于 2025-3-22 02:45:27

A Discrepancy Problem: Balancing Infinite Dimensional Vectors,ously for all integers . ≥ 1, every (finite) arithmetic progression of difference . has discrepancy ..(.) ≤ .., independently of the starting point and the length of the arithmetic progression. Formally, for every . > 0 there exists a function . such that . for all sufficiently large . ≥ ..(.). This

开始发作 发表于 2025-3-22 08:22:30

Squares with Three Nonzero Digits,uations of the shape . where . is an odd prime, . > . > 0 and .., | . |, . < ., either arise from “obvious” polynomial families or satisfy . ≤ 3. Our arguments rely upon Padé approximants to the binomial function, considered .-adically.

讨人喜欢 发表于 2025-3-22 10:04:45

http://reply.papertrans.cn/67/6689/668890/668890_5.png

内行 发表于 2025-3-22 16:22:04

Diversity in Parametric Families of Number Fields, Dvornicich and Zannier implies that, for large ., among the number fields . there are at least .∕ log. distinct; here, . > 0 depends only on the degree . and the genus . = .(.). We prove that there are at least .∕(log.). distinct fields, where . > 0 depends only on . and ..

PALSY 发表于 2025-3-22 17:59:09

,On the Discrepancy of Halton–Kronecker Sequences,t for . algebraic we have . for all . > 0. On the other hand, we show that for . with bounded continued fraction coefficients we have . which is (almost) optimal since there exist . with bounded continued fraction coefficients such that ..

Anguish 发表于 2025-3-23 00:07:08

More on Diophantine Sextuples,rational Diophantine quadruple was found by Diophantus, while Euler proved that there are infinitely many rational Diophantine quintuples. In 1999, Gibbs found the first example of a rational Diophantine sextuple, and Dujella, Kazalicki, Mikić and Szikszai recently proved that there exist infinitely

parallelism 发表于 2025-3-23 02:02:37

http://reply.papertrans.cn/67/6689/668890/668890_9.png

Spinal-Fusion 发表于 2025-3-23 06:18:59

http://reply.papertrans.cn/67/6689/668890/668890_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Number Theory – Diophantine Problems, Uniform Distribution and Applications; Festschrift in Honou Christian Elsholtz,Peter Grabner Book 201