代表 发表于 2025-3-21 17:02:07

书目名称Number Theory and Modular Forms影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0668875<br><br>        <br><br>书目名称Number Theory and Modular Forms影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0668875<br><br>        <br><br>书目名称Number Theory and Modular Forms网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0668875<br><br>        <br><br>书目名称Number Theory and Modular Forms网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0668875<br><br>        <br><br>书目名称Number Theory and Modular Forms被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0668875<br><br>        <br><br>书目名称Number Theory and Modular Forms被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0668875<br><br>        <br><br>书目名称Number Theory and Modular Forms年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0668875<br><br>        <br><br>书目名称Number Theory and Modular Forms年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0668875<br><br>        <br><br>书目名称Number Theory and Modular Forms读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0668875<br><br>        <br><br>书目名称Number Theory and Modular Forms读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0668875<br><br>        <br><br>

HUMP 发表于 2025-3-21 22:33:46

http://reply.papertrans.cn/67/6689/668875/668875_2.png

accrete 发表于 2025-3-22 02:31:47

http://reply.papertrans.cn/67/6689/668875/668875_3.png

导师 发表于 2025-3-22 05:32:02

On Dirichlet Series for Sums of Squares,e terms of Riemann Zeta function .(.) only. In this paper, we explore other arithmetical functions enjoying this remarkable property. In Theorem 2.1 below, we are able to generalize the above result and prove that if .. and .. are completely multiplicative, then we have . where . is the Dirichlet se

半圆凿 发表于 2025-3-22 10:33:20

On Non-Congruence Subgroups of the Analogue of the Modular Group in Characteristic ,,modular group ..(ℤ), where ℤ is the ring of rational integers. It is well-known that the smallest index of a non-congruence subgroup of .L.(ℤ) is 7. Here we compute this index for ..(.[.]). (In all but 6 cases it turns out to be 1 + ., where . is the order of ..)

CRASS 发表于 2025-3-22 15:48:36

http://reply.papertrans.cn/67/6689/668875/668875_6.png

丰满中国 发表于 2025-3-22 20:10:36

http://reply.papertrans.cn/67/6689/668875/668875_7.png

大门在汇总 发表于 2025-3-22 22:08:15

Estimates for Sums of Coefficients of Dirichlet Series with Functional Equation,tion of a specific kind. Suppose also that the root numbers of the twists are equidistributed on the unit circle. The purpose of this note is to get an estimate for the quantity . for a prime modulus ...We use a modification of the method of Chandrasekharan and Narasimhan and we use in an essential

gene-therapy 发表于 2025-3-23 01:41:28

Estimating Additive Character Sums for Fuchsian Groups,es of these series are well known. Here we instead include an additive character and develop the properties of the resulting series. We pay particular attention to additive characters that are non-cuspidal, i.e., that are not zero on some parabolic generators. These series may be used to estimate ce

PATHY 发表于 2025-3-23 09:02:50

The De Morgan Medal, the Rankin-Selberg method. The immediate application of his method was a non-trivial estimate for the coefficients of modular forms; it was used by Deligne and Serre in their work relating cusp forms to Artin .-functions, and the spirit of this method influenced Deligne’s proof of the Weil Conjectu
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Number Theory and Modular Forms; Papers in Memory of Bruce Berndt,Ken Ono Book 2003 Springer-Verlag US 2003 Lattice.Prime.continued fracti