缓和紧张状况 发表于 2025-3-21 19:02:31
书目名称Number Theoretic Methods影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0668839<br><br> <br><br>书目名称Number Theoretic Methods影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0668839<br><br> <br><br>书目名称Number Theoretic Methods网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0668839<br><br> <br><br>书目名称Number Theoretic Methods网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0668839<br><br> <br><br>书目名称Number Theoretic Methods被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0668839<br><br> <br><br>书目名称Number Theoretic Methods被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0668839<br><br> <br><br>书目名称Number Theoretic Methods年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0668839<br><br> <br><br>书目名称Number Theoretic Methods年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0668839<br><br> <br><br>书目名称Number Theoretic Methods读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0668839<br><br> <br><br>书目名称Number Theoretic Methods读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0668839<br><br> <br><br>FEAS 发表于 2025-3-21 23:54:33
http://reply.papertrans.cn/67/6689/668839/668839_2.pnggratify 发表于 2025-3-22 00:37:39
http://reply.papertrans.cn/67/6689/668839/668839_3.pngIDEAS 发表于 2025-3-22 05:25:15
http://reply.papertrans.cn/67/6689/668839/668839_4.png丧失 发表于 2025-3-22 12:05:25
,Ramanujan’s Formula and Modular Forms,ional equations, incomplete gamma series, and the like — are placed like nodes on the woofs. Some of them are woven by warps as Hecke theory or Lavrik’s theory. The former connects the modular relation to the functional equation, thus making it possible to go to and from between the more orderly wor一回合 发表于 2025-3-22 15:09:24
Primitive Roots: A Survey,rvey a few results and conjectures on this subject, and we discuss generalizations to arbitrary moduli. A primitive root to a modulus . is a residue coprime to . which generates a cyclic subgroup of maximal order in the group of reduced residues modulo n. .Iatrogenic 发表于 2025-3-22 17:18:53
Zeta-Functions Defined by Two Polynomials,ed by two polynomials . and ., follows. Then the holomorphy of .(.; ., .) at non-positive integers is proved, and explicit formulas for the values .(0; ., .) and .(0; ., .) are given. The latter formula gives a generalization of an explicit formula for the regularized determinant of the Laplacian on都相信我的话 发表于 2025-3-22 23:18:30
A Penultimate Step toward Cubic Theta-Weyl Sums,his paper we shall present basic ingredients for interpreting cubic Weyl sums as finite theta series, i.e. the cubic continued fraction expansion, the van der Corput reciprocal function, cubic reciprocal and parabolic transformations.DENT 发表于 2025-3-23 03:40:51
Convexity and Intersection of Random Spaces,nd when . → ∞is solved rigorously. The asymptotic expression coincides with the one found by E. Gardner (), using non rigorous replica calculations in neural network theory. When . is larger than .. the volume of the intersection goes to 0 more rapidly than exp(— . const). We use the cavity metho闪光东本 发表于 2025-3-23 05:37:08
http://reply.papertrans.cn/67/6689/668839/668839_10.png