Capricious 发表于 2025-3-21 17:50:12
书目名称Notes on the Stationary p-Laplace Equation影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0668270<br><br> <br><br>书目名称Notes on the Stationary p-Laplace Equation影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0668270<br><br> <br><br>书目名称Notes on the Stationary p-Laplace Equation网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0668270<br><br> <br><br>书目名称Notes on the Stationary p-Laplace Equation网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0668270<br><br> <br><br>书目名称Notes on the Stationary p-Laplace Equation被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0668270<br><br> <br><br>书目名称Notes on the Stationary p-Laplace Equation被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0668270<br><br> <br><br>书目名称Notes on the Stationary p-Laplace Equation年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0668270<br><br> <br><br>书目名称Notes on the Stationary p-Laplace Equation年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0668270<br><br> <br><br>书目名称Notes on the Stationary p-Laplace Equation读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0668270<br><br> <br><br>书目名称Notes on the Stationary p-Laplace Equation读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0668270<br><br> <br><br>成绩上升 发表于 2025-3-21 23:06:05
Notes on the Stationary p-Laplace Equation978-3-030-14501-9Series ISSN 2191-8198 Series E-ISSN 2191-8201充足 发表于 2025-3-22 03:36:28
http://reply.papertrans.cn/67/6683/668270/668270_3.png易发怒 发表于 2025-3-22 05:38:38
http://reply.papertrans.cn/67/6683/668270/668270_4.pngFibrillation 发表于 2025-3-22 09:06:03
http://reply.papertrans.cn/67/6683/668270/668270_5.pngRODE 发表于 2025-3-22 16:17:28
http://reply.papertrans.cn/67/6683/668270/668270_6.pngalliance 发表于 2025-3-22 20:50:01
http://reply.papertrans.cn/67/6683/668270/668270_7.pngStable-Angina 发表于 2025-3-23 01:02:04
http://reply.papertrans.cn/67/6683/668270/668270_8.pnggeometrician 发表于 2025-3-23 04:10:10
The Dirichlet Problem and Weak Solutions,The natural starting point is a Dirichlet integral .with the exponent ., ., in place of the usual 2.Gobble 发表于 2025-3-23 07:46:07
Regularity Theory,The weak solutions of the .-harmonic equation are, by definition, members of the Sobolev space .. In fact, they are also of class .. More precisely, a weak solution can be redefined in a set of Lebesgue measure zero, so that the new function is locally Hölder continuous with exponent ..