Capricious 发表于 2025-3-21 17:50:12

书目名称Notes on the Stationary p-Laplace Equation影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0668270<br><br>        <br><br>书目名称Notes on the Stationary p-Laplace Equation影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0668270<br><br>        <br><br>书目名称Notes on the Stationary p-Laplace Equation网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0668270<br><br>        <br><br>书目名称Notes on the Stationary p-Laplace Equation网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0668270<br><br>        <br><br>书目名称Notes on the Stationary p-Laplace Equation被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0668270<br><br>        <br><br>书目名称Notes on the Stationary p-Laplace Equation被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0668270<br><br>        <br><br>书目名称Notes on the Stationary p-Laplace Equation年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0668270<br><br>        <br><br>书目名称Notes on the Stationary p-Laplace Equation年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0668270<br><br>        <br><br>书目名称Notes on the Stationary p-Laplace Equation读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0668270<br><br>        <br><br>书目名称Notes on the Stationary p-Laplace Equation读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0668270<br><br>        <br><br>

成绩上升 发表于 2025-3-21 23:06:05

Notes on the Stationary p-Laplace Equation978-3-030-14501-9Series ISSN 2191-8198 Series E-ISSN 2191-8201

充足 发表于 2025-3-22 03:36:28

http://reply.papertrans.cn/67/6683/668270/668270_3.png

易发怒 发表于 2025-3-22 05:38:38

http://reply.papertrans.cn/67/6683/668270/668270_4.png

Fibrillation 发表于 2025-3-22 09:06:03

http://reply.papertrans.cn/67/6683/668270/668270_5.png

RODE 发表于 2025-3-22 16:17:28

http://reply.papertrans.cn/67/6683/668270/668270_6.png

alliance 发表于 2025-3-22 20:50:01

http://reply.papertrans.cn/67/6683/668270/668270_7.png

Stable-Angina 发表于 2025-3-23 01:02:04

http://reply.papertrans.cn/67/6683/668270/668270_8.png

geometrician 发表于 2025-3-23 04:10:10

The Dirichlet Problem and Weak Solutions,The natural starting point is a Dirichlet integral .with the exponent ., ., in place of the usual 2.

Gobble 发表于 2025-3-23 07:46:07

Regularity Theory,The weak solutions of the .-harmonic equation are, by definition, members of the Sobolev space .. In fact, they are also of class .. More precisely, a weak solution can be redefined in a set of Lebesgue measure zero, so that the new function is locally Hölder continuous with exponent ..
页: [1] 2 3 4 5
查看完整版本: Titlebook: Notes on the Stationary p-Laplace Equation; Peter Lindqvist Book 2019 The Author(s), under exclusive license to Springer Nature Switzerlan