CT951 发表于 2025-3-21 16:41:37

书目名称Notes on Functional Analysis影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0668252<br><br>        <br><br>书目名称Notes on Functional Analysis影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0668252<br><br>        <br><br>书目名称Notes on Functional Analysis网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0668252<br><br>        <br><br>书目名称Notes on Functional Analysis网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0668252<br><br>        <br><br>书目名称Notes on Functional Analysis被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0668252<br><br>        <br><br>书目名称Notes on Functional Analysis被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0668252<br><br>        <br><br>书目名称Notes on Functional Analysis年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0668252<br><br>        <br><br>书目名称Notes on Functional Analysis年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0668252<br><br>        <br><br>书目名称Notes on Functional Analysis读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0668252<br><br>        <br><br>书目名称Notes on Functional Analysis读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0668252<br><br>        <br><br>

GRAVE 发表于 2025-3-21 23:22:25

Dimensionality,Let . be a vector space and let . be a subset of it. We say . is . if for every finite subset {.,…, .} of ., the equation.holds if and only if . = . = ⋯ = . = 0. A (finite) sum like the one in (2.1) is called a . of .,…, ..

evince 发表于 2025-3-22 04:08:53

New Banach Spaces from Old,Let . be a vector space and . a subspace of it. Say that two elements . and . of . are ., . ~ ., if . − . ∈ .. This is an equivalence relation on .. The coset of . under this relation is the set..Let . be the collection of all these cosets. If we set.then . is a vector space with these operations.

自作多情 发表于 2025-3-22 05:33:58

http://reply.papertrans.cn/67/6683/668252/668252_4.png

dominant 发表于 2025-3-22 12:01:55

The Uniform Boundedness Principle,The . says that a complete metric space cannot be the union of a countable number of nowhere dense sets. This has several very useful consequences. One of them is the Uniform Boundedness Principle (U.B.P.) also called the ..

photopsia 发表于 2025-3-22 15:50:24

http://reply.papertrans.cn/67/6683/668252/668252_6.png

Extort 发表于 2025-3-22 19:27:23

Dual Spaces,The idea of duality, and the associated notion of adjointness, are important in functional analysis. We will identify the spaces .* for some of the standard Banach spaces.

GLOSS 发表于 2025-3-23 00:06:08

http://reply.papertrans.cn/67/6683/668252/668252_8.png

一夫一妻制 发表于 2025-3-23 04:05:25

The Second Dual and the Weak* Topology,The dual of .* is another Banach space .**. This is called the . or the . of .. Let . be the map from . into .** that associates with . ∈ . the element . ∈ .** defined as.        Then . is a linear map and ‖.‖ = ‖.‖. (See (9.2).) Thus . is an . and we can regard . as a subspace of .**.

mercenary 发表于 2025-3-23 07:53:21

Orthonormal Bases,A subset . in a Hilbert space is said to be an . if 〈., .〉 = 0 for all ., . in . (. ∈ .), and ‖.‖ = 1 for all . in ..
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Notes on Functional Analysis; Rajendra Bhatia Book 2009 Hindustan Book Agency (India) 2009