SUE 发表于 2025-3-25 05:41:44

Limit Cycle Bifurcations in Equivariant Systems,Chapter 10 investigates bifurcation of limit cycles in equivariant systems, including .-equivariant vector fields, ..-equivariant vector and ..-reversible vector fields. An .-equivariant quadratic system, a ..-equivariant system and a cubic (2./3)-equivariant system are studied.

裂隙 发表于 2025-3-25 07:42:59

Comparison of Methods for Computing Focus Values, method or Takens method, the perturbation technique, and the singular point value method are discussed. These three methods are shown to have the same order of computational complexity; no method has been developed so far for computing the ‘minimal singular point values’.

本能 发表于 2025-3-25 15:02:11

http://reply.papertrans.cn/67/6681/668027/668027_23.png

注意力集中 发表于 2025-3-25 18:37:57

http://reply.papertrans.cn/67/6681/668027/668027_24.png

字形刻痕 发表于 2025-3-25 20:33:25

http://reply.papertrans.cn/67/6681/668027/668027_25.png

resilience 发表于 2025-3-26 03:27:29

Applied Mathematical Scienceshttp://image.papertrans.cn/n/image/668027.jpg

设想 发表于 2025-3-26 08:07:18

https://doi.org/10.1007/978-1-4471-2918-9Hamiltonian systems; Hilbert’s 16th problem; Melnikov function; dynamical system theory; normal form; the

HATCH 发表于 2025-3-26 09:57:17

http://reply.papertrans.cn/67/6681/668027/668027_28.png

circumvent 发表于 2025-3-26 12:48:33

http://reply.papertrans.cn/67/6681/668027/668027_29.png

分开 发表于 2025-3-26 17:08:02

http://reply.papertrans.cn/67/6681/668027/668027_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles; Maoan Han,Pei Yu Book 2012 Springer-Verlag London Limited 2012 Hamilton