Motion 发表于 2025-3-21 16:31:54
书目名称Nonsmooth Optimization and Related Topics影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0667888<br><br> <br><br>书目名称Nonsmooth Optimization and Related Topics影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0667888<br><br> <br><br>书目名称Nonsmooth Optimization and Related Topics网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0667888<br><br> <br><br>书目名称Nonsmooth Optimization and Related Topics网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0667888<br><br> <br><br>书目名称Nonsmooth Optimization and Related Topics被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0667888<br><br> <br><br>书目名称Nonsmooth Optimization and Related Topics被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0667888<br><br> <br><br>书目名称Nonsmooth Optimization and Related Topics年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0667888<br><br> <br><br>书目名称Nonsmooth Optimization and Related Topics年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0667888<br><br> <br><br>书目名称Nonsmooth Optimization and Related Topics读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0667888<br><br> <br><br>书目名称Nonsmooth Optimization and Related Topics读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0667888<br><br> <br><br>爱社交 发表于 2025-3-21 21:03:57
http://reply.papertrans.cn/67/6679/667888/667888_2.pngsterilization 发表于 2025-3-22 01:07:37
Some Techniques for Finding the Search Direction in Nonsmooth Minimization Problems,e minima of nonsmooth functions of several variables. Even though the proposed methods share convex analysis as their common theoretical background, they stem from diverse approaches, frequently grounded on heuristic intuitions.byline 发表于 2025-3-22 06:40:13
http://reply.papertrans.cn/67/6679/667888/667888_4.pngouter-ear 发表于 2025-3-22 10:24:07
http://reply.papertrans.cn/67/6679/667888/667888_5.png搏斗 发表于 2025-3-22 15:00:23
http://reply.papertrans.cn/67/6679/667888/667888_6.png青少年 发表于 2025-3-22 20:25:44
Smoothness of Nonsmooth Functions,Our aim is to show that most well-known classes of nondifferentiable functions are in some sense quite smooth. Nonsmooth analysis (for short, NSA) is one of most attractive and promising areas in modern mathematics. A lot of new profound results have been obtained and much more seem to come (see, e.g., and References therein).毛细血管 发表于 2025-3-23 01:08:29
http://reply.papertrans.cn/67/6679/667888/667888_8.pngdeficiency 发表于 2025-3-23 01:37:59
Necessary Optimality Conditions via Image Problem,Assume we are given the positive integer ., a non-empty subset . of a Hilbert space . whose norm is denoted by || · ||, and the real-valued functions .: . and .: .. Consider the problemdragon 发表于 2025-3-23 06:03:30
Nonconvex Subdifferentials,We begin by stating the following result (here and later . is a Banach space).