摩擦 发表于 2025-3-21 16:52:46
书目名称Nonlinear Wave Equations影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0667748<br><br> <br><br>书目名称Nonlinear Wave Equations影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0667748<br><br> <br><br>书目名称Nonlinear Wave Equations网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0667748<br><br> <br><br>书目名称Nonlinear Wave Equations网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0667748<br><br> <br><br>书目名称Nonlinear Wave Equations被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0667748<br><br> <br><br>书目名称Nonlinear Wave Equations被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0667748<br><br> <br><br>书目名称Nonlinear Wave Equations年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0667748<br><br> <br><br>书目名称Nonlinear Wave Equations年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0667748<br><br> <br><br>书目名称Nonlinear Wave Equations读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0667748<br><br> <br><br>书目名称Nonlinear Wave Equations读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0667748<br><br> <br><br>VEST 发表于 2025-3-21 22:31:29
http://reply.papertrans.cn/67/6678/667748/667748_2.png懒惰民族 发表于 2025-3-22 02:14:18
http://reply.papertrans.cn/67/6678/667748/667748_3.png陪审团 发表于 2025-3-22 05:19:01
Introduction and Overview,. are a kind of important infinite-dimensional dynamical systems. The so-called infinite-dimensional dynamical system is a system described by nonlinear evolutionary partial differential equations (nonlinear evolutionary equations for short).APEX 发表于 2025-3-22 10:21:33
Linear Wave Equations,In this section we consider the following Cauchy problem of linear wave equations ..空洞 发表于 2025-3-22 13:00:03
Sobolev Type Inequalities with Decay Factor,In this chapter we are going to establish Sobolev type inequalities with decay factor. The key point is to consider the Lorentz invariance of the wave operator and then introduce a group of first-order partial differential operators instead of the normal differential operators in the differential operations (see Klainerman 1985).建筑师 发表于 2025-3-22 19:12:04
http://reply.papertrans.cn/67/6678/667748/667748_7.pngNICHE 发表于 2025-3-22 22:06:55
http://reply.papertrans.cn/67/6678/667748/667748_8.pngfledged 发表于 2025-3-23 03:04:53
Cauchy Problem of the Second-Order Linear Hyperbolic Equations,In order to solve the Cauchy problem of nonlinear wave equations later (see Chap. .), we will consider in this chapter the following Cauchy problem of .-dimensional linear hyperbolic equations.arbiter 发表于 2025-3-23 06:59:25
http://reply.papertrans.cn/67/6678/667748/667748_10.png