谴责 发表于 2025-3-21 17:38:00

书目名称Nonlinear Water Waves影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0667743<br><br>        <br><br>书目名称Nonlinear Water Waves影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0667743<br><br>        <br><br>书目名称Nonlinear Water Waves网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0667743<br><br>        <br><br>书目名称Nonlinear Water Waves网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0667743<br><br>        <br><br>书目名称Nonlinear Water Waves被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0667743<br><br>        <br><br>书目名称Nonlinear Water Waves被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0667743<br><br>        <br><br>书目名称Nonlinear Water Waves年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0667743<br><br>        <br><br>书目名称Nonlinear Water Waves年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0667743<br><br>        <br><br>书目名称Nonlinear Water Waves读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0667743<br><br>        <br><br>书目名称Nonlinear Water Waves读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0667743<br><br>        <br><br>

无聊点好 发表于 2025-3-21 23:26:51

HOS Simulations of Nonlinear Water Waves in Complex Media,nsional system involving boundary variables alone, and a Taylor series representation of the Dirichlet–Neumann operator. This results in a very efficient and accurate numerical solver by using the fast Fourier transform. Two-dimensional simulations of unsteady wave phenomena are shown to illustrate the performance and versatility of this approach.

Vasodilation 发表于 2025-3-22 04:25:27

http://reply.papertrans.cn/67/6678/667743/667743_3.png

Obverse 发表于 2025-3-22 05:29:44

http://reply.papertrans.cn/67/6678/667743/667743_4.png

surrogate 发表于 2025-3-22 09:12:59

http://reply.papertrans.cn/67/6678/667743/667743_5.png

蹒跚 发表于 2025-3-22 14:17:10

http://reply.papertrans.cn/67/6678/667743/667743_6.png

Tortuous 发表于 2025-3-22 19:37:18

http://reply.papertrans.cn/67/6678/667743/667743_7.png

菊花 发表于 2025-3-23 01:14:32

The Unified Transform and the Water Wave Problem, for linear problems. In 2006, the classical water wave problem was studied via the Fokas method (Ablowitz et al., J Fluid Mech 562:313–343, 2006), yielding a novel non-local formulation. In this paper we review the unified transform, with particular emphasis on its application in water wave in two spacial dimensions with moving boundaries.

审问,审讯 发表于 2025-3-23 02:39:59

http://reply.papertrans.cn/67/6678/667743/667743_9.png

CHASE 发表于 2025-3-23 07:35:13

Stokes Waves in a Constant Vorticity Flow,to the limiting Crapper wave as the vorticity strength increases indefinitely, while a fluid disk in rigid body rotation at the ends of the gaps. Touching waves at the boundaries of higher gaps contain more fluid disks.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Nonlinear Water Waves; An Interdisciplinary David Henry,Konstantinos Kalimeris,Erik Wahlén Book 2019 Springer Nature Switzerland AG 2019 wa