贪求 发表于 2025-3-21 19:30:41
书目名称Nonlinear Systems, Vol. 1影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0667723<br><br> <br><br>书目名称Nonlinear Systems, Vol. 1影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0667723<br><br> <br><br>书目名称Nonlinear Systems, Vol. 1网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0667723<br><br> <br><br>书目名称Nonlinear Systems, Vol. 1网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0667723<br><br> <br><br>书目名称Nonlinear Systems, Vol. 1被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0667723<br><br> <br><br>书目名称Nonlinear Systems, Vol. 1被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0667723<br><br> <br><br>书目名称Nonlinear Systems, Vol. 1年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0667723<br><br> <br><br>书目名称Nonlinear Systems, Vol. 1年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0667723<br><br> <br><br>书目名称Nonlinear Systems, Vol. 1读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0667723<br><br> <br><br>书目名称Nonlinear Systems, Vol. 1读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0667723<br><br> <br><br>打包 发表于 2025-3-21 21:26:50
Normal Form for a Class of Three-Dimensional Systems with Free-Divergence Principal Part the principal part of the vector field. We focus on a class of tridimensional systems whose principal part is the coupling of a Hamiltonian planar system and an unidimensional system, in such a way that the quoted principal part does not depend on the last variable and has free divergence. Our stud吵闹 发表于 2025-3-22 00:55:23
Piecewise-Linear (PWL) Canard Dynamics . (one slow and one fast variables) and . (two slow and one fast variables), we prove the existence of (maximal) canard solutions and show that the main salient features from smooth systems is preserved. We also highlight how the PWL setup carries a level of simplification of singular perturbation门闩 发表于 2025-3-22 07:16:57
Solitary Waves in the Nonlinear Dirac Equation Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subseque真实的你 发表于 2025-3-22 11:15:07
http://reply.papertrans.cn/67/6678/667723/667723_5.png敲诈 发表于 2025-3-22 15:30:53
Adiabatic Invariants of Second Order Korteweg-de Vries Type Equationer equations for shallow water are extended to the second order, beyond Korteweg-de Vries (KdV). We show that contrary to KdV for which there is an infinite number of invariants, for KdV2 there exists only one, connected to mass (volume) conservation of the fluid. For KdV2 we found only so-called .,JIBE 发表于 2025-3-22 20:51:08
http://reply.papertrans.cn/67/6678/667723/667723_7.png表否定 发表于 2025-3-22 22:28:55
http://reply.papertrans.cn/67/6678/667723/667723_8.pngFormidable 发表于 2025-3-23 04:07:31
A Logistic Non-linear Difference Equation with Two Delaysations with respect to seasons in time .. Of special interest are those non-linear equations with two delays, particularly due to the effect of food in the evolution of the population. As an adequate tool to understand the behaviors of solutions of the equation, we use an unfolding of it obtaining a间谍活动 发表于 2025-3-23 06:29:50
http://reply.papertrans.cn/67/6678/667723/667723_10.png