下边深陷 发表于 2025-3-28 14:37:54

http://reply.papertrans.cn/67/6677/667636/667636_41.png

entrance 发表于 2025-3-28 22:42:38

http://reply.papertrans.cn/67/6677/667636/667636_42.png

Ornament 发表于 2025-3-29 01:17:13

Energy transport in an inhomogeneous Heisenberg ferromagnetic chain,ed nonlinear Schrödinger equation with .-dependent coefficients is proved. An extension of the AKNS-ZS formalism is given which enables us to solve the latter equation exactly for certain specific inhomogeneities. Energy-momentum transport along the chain is related to the solution of this equation.

Collected 发表于 2025-3-29 03:43:11

Atomic nuclei as solitons, in which the .-empirical bound state energies are associated with the solutions, and formulate generally the problem of nuclear structure, reactions, and two-nucleon interactions from an inverse scattreing theory approach.

aristocracy 发表于 2025-3-29 08:40:25

http://reply.papertrans.cn/67/6677/667636/667636_45.png

avarice 发表于 2025-3-29 14:06:26

Nonlinear Phenomena978-3-540-38721-3Series ISSN 0075-8450 Series E-ISSN 1616-6361

使闭塞 发表于 2025-3-29 15:42:47

0075-8450 Overview: 978-3-540-12730-7978-3-540-38721-3Series ISSN 0075-8450 Series E-ISSN 1616-6361

staging 发表于 2025-3-29 19:57:36

,Integrability in dynamical systems and the Painlevé property,The analytic structure of the solution of an ordinary differential equation is intimately related to its integrability. The Painlevé property, ., pure poles being the only movable singularities, allows the identification of new integrable dynamical systems. In this paper, we recall briefly the Ablowita-Ramani-Segur (ARS) algorithm

GUILE 发表于 2025-3-30 03:50:41

Lecture Notes in Physicshttp://image.papertrans.cn/n/image/667636.jpg

explicit 发表于 2025-3-30 05:57:46

https://doi.org/10.1007/3-540-12730-5Hamiltonian; differential equation; dynamical system; dynamical systems; general relativity; geometry; inv
页: 1 2 3 4 [5] 6 7
查看完整版本: Titlebook: Nonlinear Phenomena; Proceedings of the C K. B. Wolf Conference proceedings 1983 Springer-Verlag Berlin Heidelberg 1983 Hamiltonian.differe