中国纪念碑
发表于 2025-3-23 11:55:27
Bifurcation Theory,o be answered satisfactorily, even when the spaces . and . are finite dimensional. Very often, we are led to study nonlinear equations dependent on a parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ℝ. It is quite usual for the above e
Nonporous
发表于 2025-3-23 17:12:28
Bifurcation Theory,parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ℝ. It is quite usual for the above equation to possess a ‘nice’ family of solutions (often called the trivial solutions). However, for certain values of λ, new solutions may appear and hence we use the term ‘bifurcation’.
规章
发表于 2025-3-23 18:59:53
http://reply.papertrans.cn/67/6676/667511/667511_13.png
invulnerable
发表于 2025-3-24 01:28:54
http://reply.papertrans.cn/67/6676/667511/667511_14.png
oracle
发表于 2025-3-24 03:08:25
http://reply.papertrans.cn/67/6676/667511/667511_15.png
航海太平洋
发表于 2025-3-24 09:41:39
5楼
联想记忆
发表于 2025-3-24 13:37:59
6楼
鄙视
发表于 2025-3-24 14:49:48
6楼
consent
发表于 2025-3-24 22:25:06
6楼
委屈
发表于 2025-3-25 00:09:31
6楼