advocate 发表于 2025-3-21 16:22:36
书目名称Nonlinear Evolution Equations and Related Topics影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0667488<br><br> <br><br>书目名称Nonlinear Evolution Equations and Related Topics影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0667488<br><br> <br><br>书目名称Nonlinear Evolution Equations and Related Topics网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0667488<br><br> <br><br>书目名称Nonlinear Evolution Equations and Related Topics网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0667488<br><br> <br><br>书目名称Nonlinear Evolution Equations and Related Topics被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0667488<br><br> <br><br>书目名称Nonlinear Evolution Equations and Related Topics被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0667488<br><br> <br><br>书目名称Nonlinear Evolution Equations and Related Topics年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0667488<br><br> <br><br>书目名称Nonlinear Evolution Equations and Related Topics年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0667488<br><br> <br><br>书目名称Nonlinear Evolution Equations and Related Topics读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0667488<br><br> <br><br>书目名称Nonlinear Evolution Equations and Related Topics读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0667488<br><br> <br><br>adroit 发表于 2025-3-21 21:55:14
,Decay estimates for “anisotropic” viscous Hamilton-Jacobi equations in ℝ,,ording to the values of the ..’s. The main tool in our approach is the derivation of L.-decay estimates for ., by a Bernstein technique inspired by the ones developed by Bénilan for the porous medium equation.蔑视 发表于 2025-3-22 04:16:43
http://reply.papertrans.cn/67/6675/667488/667488_3.pngLacerate 发表于 2025-3-22 08:31:41
http://reply.papertrans.cn/67/6675/667488/667488_4.pngHallowed 发表于 2025-3-22 10:36:31
Dirichlet and Neumann boundary conditions: What is in between?,ntains smooth functions, then . is of the form .=.(where . is the (. — 1)-dimensional Hausdorff measure and . a positive measurable bounded function on ∂Ω); i.e. we have the classical Robin boundary conditions.remission 发表于 2025-3-22 13:00:20
The focusing problem for the Eikonal equation,le. However in .., for generic initial data the asymptotic shape will be either a vanishing triangle or the region between two parabolas moving in opposite directions (a closing eye). We compare these results with the known results for the porous medium pressure equation which approaches the eikonal equation in the limit as . → 1.Ceremony 发表于 2025-3-22 17:59:26
http://reply.papertrans.cn/67/6675/667488/667488_7.pngGlucocorticoids 发表于 2025-3-22 23:14:30
http://reply.papertrans.cn/67/6675/667488/667488_8.pngSLAG 发表于 2025-3-23 04:21:05
egro-differential equations and visco-elasticity, maximal regularity for elliptic and parabolic equations, and the Ornstein-Uhlenbeck operator. ...Also in this volume, the legendary work of Bénilan-Brézis on Thomas-Fermi theory is published for the first time... .978-3-7643-7107-4978-3-0348-7924-8雄辩 发表于 2025-3-23 05:31:40
Michel Pierrebe developed in Volume III. However, constant coefficient theory has given the guidance for all that work. Although the field is no longer very active - perhaps because of its advanced state of development - and although it is possible to pass directly from Volume I to Volume III, the material prese