联系 发表于 2025-3-21 19:07:01

书目名称Nonlinear Evolution Equations and Dynamical Systems影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0667485<br><br>        <br><br>书目名称Nonlinear Evolution Equations and Dynamical Systems影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0667485<br><br>        <br><br>书目名称Nonlinear Evolution Equations and Dynamical Systems网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0667485<br><br>        <br><br>书目名称Nonlinear Evolution Equations and Dynamical Systems网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0667485<br><br>        <br><br>书目名称Nonlinear Evolution Equations and Dynamical Systems被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0667485<br><br>        <br><br>书目名称Nonlinear Evolution Equations and Dynamical Systems被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0667485<br><br>        <br><br>书目名称Nonlinear Evolution Equations and Dynamical Systems年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0667485<br><br>        <br><br>书目名称Nonlinear Evolution Equations and Dynamical Systems年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0667485<br><br>        <br><br>书目名称Nonlinear Evolution Equations and Dynamical Systems读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0667485<br><br>        <br><br>书目名称Nonlinear Evolution Equations and Dynamical Systems读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0667485<br><br>        <br><br>

追逐 发表于 2025-3-21 20:51:47

Hirota Equations of Level > 1], For a given fundamental representation of an affine Lie algebra the theory was extended to highest weight irreducible modules that is . of arbitrary level in by Lepowsky and Wilson. We shall use their level 2 representation for the principally twisted realisation of .. to derive the corresponding Hirota equations.

Ige326 发表于 2025-3-22 02:27:35

On the Integration of the Infinite Toda Lattice. Daletsky, G. B. Podkolzin and N. V. Jernakov (see C33 for the references). In this report for an arbitrary bounded initial data we obtain formulae for the coefficients of series, that represent solutions of the system (1).

progestogen 发表于 2025-3-22 06:56:16

From Polynomial Solutions to a “General” Solution of the BKP Equatione direct method point of view it is the fact that the fundamental polynomial solution of the (Hirota form of the) KP equation are . that gives the clearest suggestion and the main consequence of the above observation is that the technique is restricted to equations of the (reduced) bilinear KP and n-component KP hierarchies (Sato 1981).

卡死偷电 发表于 2025-3-22 12:15:07

http://reply.papertrans.cn/67/6675/667485/667485_5.png

Fibroid 发表于 2025-3-22 14:27:33

http://reply.papertrans.cn/67/6675/667485/667485_6.png

迅速飞过 发表于 2025-3-22 19:46:15

Exactly Solvable Nonlinear Evolution Equations Expressed by Trilinear Formerminants. The theory of τ function developed by Sato et al. strongly relies on this fact . Then an interesting question is whether it is possible to extend the soliton equations from the point of view.

neurologist 发表于 2025-3-23 00:43:16

Integrable , ≤ O Component Nonlinear Schrödinger Model, Phase Transitions and Supersymmetrye in the form of the vector or matrix Nonlinear Schrödinger Equations (NLSE) with global symmetry in the space of order parameters . The close analogies between antiferromagnetism and superfluidity in the context of classical integrable models have exact meaning in the form of the gauge-equivalence of the Heisenberg model and NLSE.

大沟 发表于 2025-3-23 04:56:44

Recent Developments in Multidimensional Inverse Scatteringnonlocal RH problem, it is possible to use the same analytic structure associated with decaying solutions to capture bounded but non-decaying solutions. In particular this method is capable of capturing dromions as well as perturbations of line-solitons. This extended dressing method for nonlocal RH problems is illustrated in §2.

精密 发表于 2025-3-23 09:21:51

“Nonstandard” Classes of Integrable Equations in 1+1 and 2+1 Dimensions for these constructions is a “r-matrix”, which -in the simplest cases- is obtained by a decomposition of the underlying algebra . of Lax operators under consideration: if . = .+⊕.- with Lie subalgebras .±, then the map . given by .:=.−P− provides an instance of such a .-matrix. Here .− are the proj
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Nonlinear Evolution Equations and Dynamical Systems; Needs ’90 Vladimir G. Makhankov,Oktay K. Pashaev Conference proceedings 1991 Springer-