SPIR 发表于 2025-3-21 17:59:27
书目名称Nonlinear Elliptic and Parabolic Problems影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0667475<br><br> <br><br>书目名称Nonlinear Elliptic and Parabolic Problems影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0667475<br><br> <br><br>书目名称Nonlinear Elliptic and Parabolic Problems网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0667475<br><br> <br><br>书目名称Nonlinear Elliptic and Parabolic Problems网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0667475<br><br> <br><br>书目名称Nonlinear Elliptic and Parabolic Problems被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0667475<br><br> <br><br>书目名称Nonlinear Elliptic and Parabolic Problems被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0667475<br><br> <br><br>书目名称Nonlinear Elliptic and Parabolic Problems年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0667475<br><br> <br><br>书目名称Nonlinear Elliptic and Parabolic Problems年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0667475<br><br> <br><br>书目名称Nonlinear Elliptic and Parabolic Problems读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0667475<br><br> <br><br>书目名称Nonlinear Elliptic and Parabolic Problems读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0667475<br><br> <br><br>浮夸 发表于 2025-3-21 21:50:47
http://reply.papertrans.cn/67/6675/667475/667475_2.png健谈 发表于 2025-3-22 03:21:00
http://reply.papertrans.cn/67/6675/667475/667475_3.png有杂色 发表于 2025-3-22 07:22:03
http://reply.papertrans.cn/67/6675/667475/667475_4.png津贴 发表于 2025-3-22 09:55:35
http://reply.papertrans.cn/67/6675/667475/667475_5.png内阁 发表于 2025-3-22 15:47:07
Existence and Uniqueness Results for Reaction-diffusion Processes of Electrically Charged Species,on processes of electrically charged species in .-dimensional bounded Lipschitzian domains. We include Fermi-Dirac statistics and admit nonsmooth material coefficients. We prove existence and uniqueness of bounded global solutions.征税 发表于 2025-3-22 18:21:42
An Inverse Problem for a Phase-field Model in Sobolev Spaces,fy the convolution memory kernels and the diffusion coefficient besides the temperature and the phase-field parameter. We prove our results in the framework of Sobolev spaces. Our fundamental tools are an optimal regularity result in the . spaces and fixed point arguments.Parallel 发表于 2025-3-22 22:05:14
http://reply.papertrans.cn/67/6675/667475/667475_8.pngConquest 发表于 2025-3-23 03:39:30
Progress in Nonlinear Differential Equations and Their Applicationshttp://image.papertrans.cn/n/image/667475.jpgcapsule 发表于 2025-3-23 07:35:45
https://doi.org/10.1007/3-7643-7385-7Boundary value problem; Calculus of variations; Functional analysis; Navier-Stokes equation; Navier-Stok