不能平庸 发表于 2025-3-21 16:20:18
书目名称Nonlinear Differential Equations and Dynamical Systems影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0667390<br><br> <br><br>书目名称Nonlinear Differential Equations and Dynamical Systems影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0667390<br><br> <br><br>书目名称Nonlinear Differential Equations and Dynamical Systems网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0667390<br><br> <br><br>书目名称Nonlinear Differential Equations and Dynamical Systems网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0667390<br><br> <br><br>书目名称Nonlinear Differential Equations and Dynamical Systems被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0667390<br><br> <br><br>书目名称Nonlinear Differential Equations and Dynamical Systems被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0667390<br><br> <br><br>书目名称Nonlinear Differential Equations and Dynamical Systems年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0667390<br><br> <br><br>书目名称Nonlinear Differential Equations and Dynamical Systems年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0667390<br><br> <br><br>书目名称Nonlinear Differential Equations and Dynamical Systems读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0667390<br><br> <br><br>书目名称Nonlinear Differential Equations and Dynamical Systems读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0667390<br><br> <br><br>箴言 发表于 2025-3-21 22:43:31
Textbook 1996Latest editionterature. The basic concepts necessary to study differential equations - critical points and equilibrium, periodic solutions, invariant sets and invariant manifolds - are discussed first. Stability theory is then developed starting with linearisation methods going back to Lyapunov and Poincaré. In t多节 发表于 2025-3-22 03:49:38
http://reply.papertrans.cn/67/6674/667390/667390_3.pngGRACE 发表于 2025-3-22 04:54:07
http://reply.papertrans.cn/67/6674/667390/667390_4.pnganthesis 发表于 2025-3-22 12:17:01
http://reply.papertrans.cn/67/6674/667390/667390_5.pngmodifier 发表于 2025-3-22 13:32:10
http://reply.papertrans.cn/67/6674/667390/667390_6.png艺术 发表于 2025-3-22 17:50:03
http://reply.papertrans.cn/67/6674/667390/667390_7.pngmolest 发表于 2025-3-23 00:59:36
Introduction, the form . using Newton’s fluxie notation .. The variable . is a scalar, . ∈ ℝ, often identified with time. The vector function . : . → ℝ. is continuous in . and .; . is an open subset of ℝ., so . ∈ ℝ..otic-capsule 发表于 2025-3-23 03:32:44
http://reply.papertrans.cn/67/6674/667390/667390_9.pngOrdnance 发表于 2025-3-23 06:09:31
http://reply.papertrans.cn/67/6674/667390/667390_10.png