EFFCT 发表于 2025-3-21 17:06:35
书目名称Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0667023<br><br> <br><br>书目名称Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0667023<br><br> <br><br>书目名称Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0667023<br><br> <br><br>书目名称Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0667023<br><br> <br><br>书目名称Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0667023<br><br> <br><br>书目名称Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0667023<br><br> <br><br>书目名称Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0667023<br><br> <br><br>书目名称Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0667023<br><br> <br><br>书目名称Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0667023<br><br> <br><br>书目名称Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0667023<br><br> <br><br>Blood-Vessels 发表于 2025-3-21 23:18:00
http://reply.papertrans.cn/67/6671/667023/667023_2.pngIRK 发表于 2025-3-22 01:47:31
http://reply.papertrans.cn/67/6671/667023/667023_3.pngTRAWL 发表于 2025-3-22 05:48:23
http://reply.papertrans.cn/67/6671/667023/667023_4.pngaspect 发表于 2025-3-22 10:34:12
978-3-540-42416-1Springer-Verlag Berlin Heidelberg 2001Extricate 发表于 2025-3-22 14:18:59
Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners978-3-540-44625-5Series ISSN 0075-8434 Series E-ISSN 1617-9692Fretful 发表于 2025-3-22 17:59:47
http://reply.papertrans.cn/67/6671/667023/667023_7.png难听的声音 发表于 2025-3-22 21:35:22
http://reply.papertrans.cn/67/6671/667023/667023_8.pngnarcissism 发表于 2025-3-23 02:17:16
http://reply.papertrans.cn/67/6671/667023/667023_9.png礼节 发表于 2025-3-23 06:54:52
Monoidal categories and monoidal 2-categories,BTC’s, the various ribbon and balancing elements, and their relations. As a result, we obtain that any BTC is equivalent to one, which is strictly rigid, i.e., we have . = . . and the canonical balancing is just the identity.