EFFCT
发表于 2025-3-21 16:06:20
书目名称Non-Bloch Band Theory of Non-Hermitian Systems影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0666857<br><br> <br><br>书目名称Non-Bloch Band Theory of Non-Hermitian Systems影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0666857<br><br> <br><br>书目名称Non-Bloch Band Theory of Non-Hermitian Systems网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0666857<br><br> <br><br>书目名称Non-Bloch Band Theory of Non-Hermitian Systems网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0666857<br><br> <br><br>书目名称Non-Bloch Band Theory of Non-Hermitian Systems被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0666857<br><br> <br><br>书目名称Non-Bloch Band Theory of Non-Hermitian Systems被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0666857<br><br> <br><br>书目名称Non-Bloch Band Theory of Non-Hermitian Systems年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0666857<br><br> <br><br>书目名称Non-Bloch Band Theory of Non-Hermitian Systems年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0666857<br><br> <br><br>书目名称Non-Bloch Band Theory of Non-Hermitian Systems读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0666857<br><br> <br><br>书目名称Non-Bloch Band Theory of Non-Hermitian Systems读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0666857<br><br> <br><br>
Cardioversion
发表于 2025-3-21 22:33:47
http://reply.papertrans.cn/67/6669/666857/666857_2.png
漫不经心
发表于 2025-3-22 03:24:44
http://reply.papertrans.cn/67/6669/666857/666857_3.png
SOBER
发表于 2025-3-22 05:05:12
http://reply.papertrans.cn/67/6669/666857/666857_4.png
apropos
发表于 2025-3-22 12:30:12
http://reply.papertrans.cn/67/6669/666857/666857_5.png
blister
发表于 2025-3-22 13:58:51
Hermitian Systems and Non-Hermitian Systems,tem from a geometric phase. Then we review topological classifications in terms of the ten-fold Altland-Zirnbauer symmetry class. Next, we review the brief history of non-Hermitian physics. Then we explain that many intriguing phenomena originating from nontrivial degeneracies of energy eigenvalues
GEAR
发表于 2025-3-22 20:17:45
Non-Hermitian Open Chain and Periodic Chain,el, we discuss how to determine the generalized Brillouin zone. Then we analytically show the difference between the energy spectrum under an open boundary condition and that under a periodic boundary condition, which is induced by the non-Hermitian skin effect.
GILD
发表于 2025-3-22 23:18:47
Non-Bloch Band Theory of Non-Hermitian Systems and Bulk-Edge Correspondence,zed Brillouin zone for the complex Bloch wave number. From the generalized Brillouin zone, we can calculate the energy spectra, which reproduce the band structure in an open chain of this system. As examples, we apply our theory to some models, and we explain remarkable features of the generalized B
homocysteine
发表于 2025-3-23 03:35:02
http://reply.papertrans.cn/67/6669/666857/666857_9.png
Organization
发表于 2025-3-23 07:58:15
http://reply.papertrans.cn/67/6669/666857/666857_10.png