疲惫的老马 发表于 2025-3-25 05:55:29
http://reply.papertrans.cn/67/6668/666779/666779_21.png项目 发表于 2025-3-25 10:05:26
http://reply.papertrans.cn/67/6668/666779/666779_22.pngneedle 发表于 2025-3-25 12:17:24
978-1-4419-1896-3Springer Science+Business Media New York 2004Suppository 发表于 2025-3-25 17:10:33
http://reply.papertrans.cn/67/6668/666779/666779_24.pngBAIT 发表于 2025-3-25 23:58:57
http://reply.papertrans.cn/67/6668/666779/666779_25.png捏造 发表于 2025-3-26 03:55:31
Solutions to Exercises,Let .(.) be the probability density function of .. For -./2 <.<./2, we have P.(.) = .(.). The probability of having -. ≤.≤-./2 is 1/4, as is the probability that ./2 ≤.≤.. We thus see that, for ., we must consider a joint probability density and discrete probability law.嬉耍 发表于 2025-3-26 04:22:41
http://reply.papertrans.cn/67/6668/666779/666779_27.pngMIME 发表于 2025-3-26 09:23:54
Philippe Réfrégieriminarydefinitions, theories and techniques related to the exploration ofbehaviors of FSMs. The second part presents an implicit algorithm forexact state minimization of incompletely specified finite statemachines (ISFSMs), and an exhaustive presentation of explicit andimplicit algorithms for the binate cover978-1-4419-5170-0978-1-4757-2622-0Carminative 发表于 2025-3-26 15:59:17
http://reply.papertrans.cn/67/6668/666779/666779_29.png翅膀拍动 发表于 2025-3-26 18:01:44
Philippe Réfrégier equivalence classes of states implicitly. Equivalence classes are basically all that is needed to minimize a completely specified state machine. A compatible projection operator uniquely encodes each equivalence class by selecting a unique representative of the class to which a given state belongs.