漠不关心 发表于 2025-3-21 19:31:35
书目名称Nodal Discontinuous Galerkin Methods影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0666759<br><br> <br><br>书目名称Nodal Discontinuous Galerkin Methods影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0666759<br><br> <br><br>书目名称Nodal Discontinuous Galerkin Methods网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0666759<br><br> <br><br>书目名称Nodal Discontinuous Galerkin Methods网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0666759<br><br> <br><br>书目名称Nodal Discontinuous Galerkin Methods被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0666759<br><br> <br><br>书目名称Nodal Discontinuous Galerkin Methods被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0666759<br><br> <br><br>书目名称Nodal Discontinuous Galerkin Methods年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0666759<br><br> <br><br>书目名称Nodal Discontinuous Galerkin Methods年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0666759<br><br> <br><br>书目名称Nodal Discontinuous Galerkin Methods读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0666759<br><br> <br><br>书目名称Nodal Discontinuous Galerkin Methods读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0666759<br><br> <br><br>Obsequious 发表于 2025-3-21 20:35:08
http://reply.papertrans.cn/67/6668/666759/666759_2.png中和 发表于 2025-3-22 00:43:33
http://reply.papertrans.cn/67/6668/666759/666759_3.pngCarcinogen 发表于 2025-3-22 06:02:54
Introduction, of methods for the integration of systems of ordinary differential equations available to choose among. With such a variety of successful and well tested methods, one is tempted to ask why there is a need to consider yet another method.扩大 发表于 2025-3-22 11:00:18
http://reply.papertrans.cn/67/6668/666759/666759_5.png有机体 发表于 2025-3-22 14:00:14
http://reply.papertrans.cn/67/6668/666759/666759_6.png聚集 发表于 2025-3-22 19:43:46
http://reply.papertrans.cn/67/6668/666759/666759_7.pngbeta-carotene 发表于 2025-3-23 00:21:45
Jan S. Hesthaven,Tim WarburtonFirst text on DG-FEM, suitable both as a textbook and for self sudy.Attention to both basic analysis and algorithmic issues.Easily modified MATLAB library routines.Enables 1D-3D solution of PDEs in ge婴儿 发表于 2025-3-23 03:34:02
The key ideas,oundary ∂Ω and assume that this domain is well approximated by the computational domain Ω.. This is a space filling triangulation composed of a collection of . geometry-conforming nonoverlapping elements, D.. The shape of these elements can be arbitrary although we will mostly consider cases where they are .-dimensional simplexes.休闲 发表于 2025-3-23 07:12:28
http://reply.papertrans.cn/67/6668/666759/666759_10.png