不能平庸 发表于 2025-3-21 18:42:00
书目名称New Trends in Database and Information Systems影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0665912<br><br> <br><br>书目名称New Trends in Database and Information Systems影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0665912<br><br> <br><br>书目名称New Trends in Database and Information Systems网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0665912<br><br> <br><br>书目名称New Trends in Database and Information Systems网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0665912<br><br> <br><br>书目名称New Trends in Database and Information Systems被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0665912<br><br> <br><br>书目名称New Trends in Database and Information Systems被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0665912<br><br> <br><br>书目名称New Trends in Database and Information Systems年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0665912<br><br> <br><br>书目名称New Trends in Database and Information Systems年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0665912<br><br> <br><br>书目名称New Trends in Database and Information Systems读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0665912<br><br> <br><br>书目名称New Trends in Database and Information Systems读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0665912<br><br> <br><br>Flustered 发表于 2025-3-22 00:08:56
defeasibility and coherence in the law.New and improved ver.Studies in Legal Logic. is a collection of nine interrelated papers about the logic, epistemology and ontology of law. All of the papers were written after the publication of the author’s Reasoning with Rules and supplement the issues addrhardheaded 发表于 2025-3-22 03:30:25
http://reply.papertrans.cn/67/6660/665912/665912_3.png卜闻 发表于 2025-3-22 07:09:52
Antônio Diogo Forte Martins,José Maria Monteiro,Javam C. Machado defeasibility and coherence in the law.New and improved ver.Studies in Legal Logic. is a collection of nine interrelated papers about the logic, epistemology and ontology of law. All of the papers were written after the publication of the author’s Reasoning with Rules and supplement the issues addrspinal-stenosis 发表于 2025-3-22 11:23:38
http://reply.papertrans.cn/67/6660/665912/665912_5.pngEndometrium 发表于 2025-3-22 14:15:42
Miran Ismaiel Nadir,Kjell Orsborn defeasibility and coherence in the law.New and improved ver.Studies in Legal Logic. is a collection of nine interrelated papers about the logic, epistemology and ontology of law. All of the papers were written after the publication of the author’s Reasoning with Rules and supplement the issues addr不适当 发表于 2025-3-22 17:45:55
orm (.) = −tr .. The .(.) adjoint orbits are the symplectic leaves and the algebra, .(.), of polynomial functions on .(.) is a Poisson algebra. In particular, if . ∈ .(.), then there is a corresponding vector field .. on .(.). If . ≤ ., then .(.) embeds as a Lie subalgebra of .(.) (upper left hand bOptometrist 发表于 2025-3-22 21:21:48
Jero Schäfer,Lena Wieseorm (.) = −tr .. The .(.) adjoint orbits are the symplectic leaves and the algebra, .(.), of polynomial functions on .(.) is a Poisson algebra. In particular, if . ∈ .(.), then there is a corresponding vector field .. on .(.). If . ≤ ., then .(.) embeds as a Lie subalgebra of .(.) (upper left hand bleniency 发表于 2025-3-23 03:12:07
João Pedro C. Castro,Lucas M. F. Romero,Anderson Chaves Carniel,Cristina D. Aguiarorm (.) = −tr .. The .(.) adjoint orbits are the symplectic leaves and the algebra, .(.), of polynomial functions on .(.) is a Poisson algebra. In particular, if . ∈ .(.), then there is a corresponding vector field .. on .(.). If . ≤ ., then .(.) embeds as a Lie subalgebra of .(.) (upper left hand bPermanent 发表于 2025-3-23 08:47:31
http://reply.papertrans.cn/67/6660/665912/665912_10.png