Insularity
发表于 2025-3-21 19:28:52
书目名称New Techniques in Resolution of Singularities影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0665802<br><br> <br><br>书目名称New Techniques in Resolution of Singularities影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0665802<br><br> <br><br>书目名称New Techniques in Resolution of Singularities网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0665802<br><br> <br><br>书目名称New Techniques in Resolution of Singularities网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0665802<br><br> <br><br>书目名称New Techniques in Resolution of Singularities被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0665802<br><br> <br><br>书目名称New Techniques in Resolution of Singularities被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0665802<br><br> <br><br>书目名称New Techniques in Resolution of Singularities年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0665802<br><br> <br><br>书目名称New Techniques in Resolution of Singularities年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0665802<br><br> <br><br>书目名称New Techniques in Resolution of Singularities读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0665802<br><br> <br><br>书目名称New Techniques in Resolution of Singularities读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0665802<br><br> <br><br>
滑动
发表于 2025-3-21 23:38:25
978-3-031-32114-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
commodity
发表于 2025-3-22 02:53:51
New Techniques in Resolution of Singularities978-3-031-32115-3Series ISSN 1661-237X Series E-ISSN 2296-5041
谄媚于人
发表于 2025-3-22 06:55:01
Oberwolfach Seminarshttp://image.papertrans.cn/n/image/665802.jpg
abject
发表于 2025-3-22 09:17:55
http://reply.papertrans.cn/67/6659/665802/665802_5.png
Ganglion-Cyst
发表于 2025-3-22 16:14:53
http://reply.papertrans.cn/67/6659/665802/665802_6.png
LAY
发表于 2025-3-22 18:02:08
http://reply.papertrans.cn/67/6659/665802/665802_7.png
LAY
发表于 2025-3-22 22:45:19
http://reply.papertrans.cn/67/6659/665802/665802_8.png
MUMP
发表于 2025-3-23 03:29:04
Birational Geometry Using Weighted Blowing Up,This is an exposition of ideas appearing in Abramovich et al. (Functorial embedded resolution via weighted blowings up, arXiv:1906.07106, 2019), discussing in addition the extent to which one can address other aspects of birational geometry using weighted blowings up.
花争吵
发表于 2025-3-23 08:07:11
http://reply.papertrans.cn/67/6659/665802/665802_10.png