Gullet 发表于 2025-3-21 16:43:25

书目名称New Directions in Mathematical Fluid Mechanics影响因子(影响力)<br>        http://impactfactor.cn/2024/if/?ISSN=BK0665106<br><br>        <br><br>书目名称New Directions in Mathematical Fluid Mechanics影响因子(影响力)学科排名<br>        http://impactfactor.cn/2024/ifr/?ISSN=BK0665106<br><br>        <br><br>书目名称New Directions in Mathematical Fluid Mechanics网络公开度<br>        http://impactfactor.cn/2024/at/?ISSN=BK0665106<br><br>        <br><br>书目名称New Directions in Mathematical Fluid Mechanics网络公开度学科排名<br>        http://impactfactor.cn/2024/atr/?ISSN=BK0665106<br><br>        <br><br>书目名称New Directions in Mathematical Fluid Mechanics被引频次<br>        http://impactfactor.cn/2024/tc/?ISSN=BK0665106<br><br>        <br><br>书目名称New Directions in Mathematical Fluid Mechanics被引频次学科排名<br>        http://impactfactor.cn/2024/tcr/?ISSN=BK0665106<br><br>        <br><br>书目名称New Directions in Mathematical Fluid Mechanics年度引用<br>        http://impactfactor.cn/2024/ii/?ISSN=BK0665106<br><br>        <br><br>书目名称New Directions in Mathematical Fluid Mechanics年度引用学科排名<br>        http://impactfactor.cn/2024/iir/?ISSN=BK0665106<br><br>        <br><br>书目名称New Directions in Mathematical Fluid Mechanics读者反馈<br>        http://impactfactor.cn/2024/5y/?ISSN=BK0665106<br><br>        <br><br>书目名称New Directions in Mathematical Fluid Mechanics读者反馈学科排名<br>        http://impactfactor.cn/2024/5yr/?ISSN=BK0665106<br><br>        <br><br>

mercenary 发表于 2025-3-21 20:31:24

,Finite-dimensional Control for the Navier—Stokes Equations,ontrol is selected from this subspace too. On the basis of estimates of the solution for the subdifferential Cauchy problem for a Navier—Stokes system, controllability of the flow is proven on the condition that the norm of the control is minimal.

Hypopnea 发表于 2025-3-22 04:15:56

http://reply.papertrans.cn/67/6652/665106/665106_3.png

任意 发表于 2025-3-22 05:13:14

Boundary Control Problems for Stationary Equations of Heat Convection,. Numerical algorithm based on Newton’s method for the optimality system and finite element method for linearized boundary value problems is proposed. Some computational results connected with the vortex reduction in the backward-facing-step channel by means of the heat flux on a part of the boundary are given and analyzed.

华而不实 发表于 2025-3-22 09:51:00

http://reply.papertrans.cn/67/6652/665106/665106_5.png

Regurgitation 发表于 2025-3-22 14:47:46

http://reply.papertrans.cn/67/6652/665106/665106_6.png

浮雕 发表于 2025-3-22 20:52:29

On the Sharp Vanishing Viscosity Limit of Viscous Incompressible Fluid Flows,ce .(;. .). This convergence result, in the strong topology, is due to T. Kato, see [.]. We show here a very elementary proof. We assume, together with the convergence of . to zero, the convergence of the initial data in the . . norm.

跳动 发表于 2025-3-22 23:35:31

http://reply.papertrans.cn/67/6652/665106/665106_8.png

渗透 发表于 2025-3-23 04:36:30

Viscous Flows in Domains with a Multiply Connected Boundary,also intersects each component of the boundary. Having available this estimate, we prove an existence theorem for the axially symmetric problem in a domain with a multiply connected boundary. We consider also the problem in a curvilinear ring and formulate a conditional result concerning its solvability.

称赞 发表于 2025-3-23 05:34:11

Advances in Mathematical Fluid Mechanicshttp://image.papertrans.cn/n/image/665106.jpg
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: New Directions in Mathematical Fluid Mechanics; The Alexander V. Kaz Andrei V. Fursikov,Giovanni P. Galdi,Vladislav V. Book 2010 Birkhäuse