affidavit 发表于 2025-3-21 18:12:28
书目名称New Developments in Lie Theory and Their Applications影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0665019<br><br> <br><br>书目名称New Developments in Lie Theory and Their Applications影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0665019<br><br> <br><br>书目名称New Developments in Lie Theory and Their Applications网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0665019<br><br> <br><br>书目名称New Developments in Lie Theory and Their Applications网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0665019<br><br> <br><br>书目名称New Developments in Lie Theory and Their Applications被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0665019<br><br> <br><br>书目名称New Developments in Lie Theory and Their Applications被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0665019<br><br> <br><br>书目名称New Developments in Lie Theory and Their Applications年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0665019<br><br> <br><br>书目名称New Developments in Lie Theory and Their Applications年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0665019<br><br> <br><br>书目名称New Developments in Lie Theory and Their Applications读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0665019<br><br> <br><br>书目名称New Developments in Lie Theory and Their Applications读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0665019<br><br> <br><br>在驾驶 发表于 2025-3-21 22:21:08
http://reply.papertrans.cn/67/6651/665019/665019_2.png十字架 发表于 2025-3-22 02:26:36
http://reply.papertrans.cn/67/6651/665019/665019_3.png易受刺激 发表于 2025-3-22 07:35:55
On Spherical Modules,Let . be a group, . a finite dimensional complex vector space and . : . → .(.) a representation. Let us denote by . the ring of all polynomial functions on .; clearly . acts on .(.). The main problem of the classical invariant theory can be phrased as follows: To find explicitly all the .-invariant polynomial functions on ..烦躁的女人 发表于 2025-3-22 11:22:37
Generalized Weil Representations for SL(n,k), n odd, k a Finite Field,Generalized Weil representations for the group . = SL(.), . a finite field, are constructed by contraction of a suitable complex .-vector bundle with the help of an appropriate connection. This extends a previous construction by the authors for the case where . is even, obtained with the help of “Grassmann-Heisenberg” groups.听觉 发表于 2025-3-22 12:56:25
Progress in Mathematicshttp://image.papertrans.cn/n/image/665019.jpgcuticle 发表于 2025-3-22 19:39:44
http://reply.papertrans.cn/67/6651/665019/665019_7.png合同 发表于 2025-3-22 23:20:36
http://reply.papertrans.cn/67/6651/665019/665019_8.png消灭 发表于 2025-3-23 03:08:47
http://reply.papertrans.cn/67/6651/665019/665019_9.pngPHONE 发表于 2025-3-23 05:35:51
http://reply.papertrans.cn/67/6651/665019/665019_10.png