和尚吃肉片
发表于 2025-3-21 18:28:24
书目名称Neural-Symbolic Learning and Reasoning影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0663768<br><br> <br><br>书目名称Neural-Symbolic Learning and Reasoning影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0663768<br><br> <br><br>书目名称Neural-Symbolic Learning and Reasoning网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0663768<br><br> <br><br>书目名称Neural-Symbolic Learning and Reasoning网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0663768<br><br> <br><br>书目名称Neural-Symbolic Learning and Reasoning被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0663768<br><br> <br><br>书目名称Neural-Symbolic Learning and Reasoning被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0663768<br><br> <br><br>书目名称Neural-Symbolic Learning and Reasoning年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0663768<br><br> <br><br>书目名称Neural-Symbolic Learning and Reasoning年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0663768<br><br> <br><br>书目名称Neural-Symbolic Learning and Reasoning读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0663768<br><br> <br><br>书目名称Neural-Symbolic Learning and Reasoning读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0663768<br><br> <br><br>
Stricture
发表于 2025-3-21 23:00:31
http://reply.papertrans.cn/67/6638/663768/663768_2.png
Insul岛
发表于 2025-3-22 03:10:46
http://reply.papertrans.cn/67/6638/663768/663768_3.png
行乞
发表于 2025-3-22 06:16:52
Bayesian Inverse Graphics for Few-Shot Concept Learninguses our new differentiable renderer for optimizing global scene parameters through gradient descent, sampling posterior distributions over object parameters with Markov Chain Monte Carlo (MCMC), and using a neural based likelihood function. The code and datasets are available at .).
Silent-Ischemia
发表于 2025-3-22 10:34:54
http://reply.papertrans.cn/67/6638/663768/663768_5.png
模仿
发表于 2025-3-22 14:34:32
http://reply.papertrans.cn/67/6638/663768/663768_6.png
Ancestor
发表于 2025-3-22 18:29:07
http://reply.papertrans.cn/67/6638/663768/663768_7.png
Recessive
发表于 2025-3-22 21:46:24
Enhancing Machine Learning Predictions Through Knowledge Graph Embeddingsechniques, applied to heart and chronic kidney disease prediction. Our results indicate consistent improvements in model performance across various ML models and tasks, thus confirming our hypothesis, e.g. we increased the F2 score for the KNN from 70% to 82.22%, and the F2 score for SVM from 74.53%
buoyant
发表于 2025-3-23 03:09:16
http://reply.papertrans.cn/67/6638/663768/663768_9.png
碎片
发表于 2025-3-23 09:29:02
http://reply.papertrans.cn/67/6638/663768/663768_10.png