peak-flow-meter 发表于 2025-3-21 19:01:42
书目名称Neural Information Processing影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0663641<br><br> <br><br>书目名称Neural Information Processing影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0663641<br><br> <br><br>书目名称Neural Information Processing网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0663641<br><br> <br><br>书目名称Neural Information Processing网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0663641<br><br> <br><br>书目名称Neural Information Processing被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0663641<br><br> <br><br>书目名称Neural Information Processing被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0663641<br><br> <br><br>书目名称Neural Information Processing年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0663641<br><br> <br><br>书目名称Neural Information Processing年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0663641<br><br> <br><br>书目名称Neural Information Processing读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0663641<br><br> <br><br>书目名称Neural Information Processing读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0663641<br><br> <br><br>Iniquitous 发表于 2025-3-21 23:26:43
http://reply.papertrans.cn/67/6637/663641/663641_2.png拱形大桥 发表于 2025-3-22 03:51:57
A Deep Learning Scheme for Extracting Pedestrian-Parcel Tuples from Videosy re-identification of pedestrians and parcels. In the interaction module, we propose a lightweight interaction model for discriminating the affiliation between pedestrians and parcels in a single RGB image. Experiments on a video data at a subway entrance validate the proposed approach.征兵 发表于 2025-3-22 05:11:47
http://reply.papertrans.cn/67/6637/663641/663641_4.pngInvertebrate 发表于 2025-3-22 11:16:26
http://reply.papertrans.cn/67/6637/663641/663641_5.pngdebble 发表于 2025-3-22 15:59:52
http://reply.papertrans.cn/67/6637/663641/663641_6.pngFigate 发表于 2025-3-22 20:06:35
http://reply.papertrans.cn/67/6637/663641/663641_7.png雪崩 发表于 2025-3-23 00:21:40
http://reply.papertrans.cn/67/6637/663641/663641_8.pngOrgasm 发表于 2025-3-23 05:13:07
http://reply.papertrans.cn/67/6637/663641/663641_9.pngCommission 发表于 2025-3-23 08:30:51
Fault Tolerant Broad Learning Systemtolerant BLS (FTBLS). First, we develop a fault tolerant objective function for BLS. Based on the developed objective function, we develop a training algorithm to construct a BLS network. The simulation results show that our proposed FTBLS is much better than the classical BLS.