Gullet 发表于 2025-3-21 19:21:44

书目名称Neural Information Processing影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0663635<br><br>        <br><br>书目名称Neural Information Processing影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0663635<br><br>        <br><br>书目名称Neural Information Processing网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0663635<br><br>        <br><br>书目名称Neural Information Processing网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0663635<br><br>        <br><br>书目名称Neural Information Processing被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0663635<br><br>        <br><br>书目名称Neural Information Processing被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0663635<br><br>        <br><br>书目名称Neural Information Processing年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0663635<br><br>        <br><br>书目名称Neural Information Processing年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0663635<br><br>        <br><br>书目名称Neural Information Processing读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0663635<br><br>        <br><br>书目名称Neural Information Processing读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0663635<br><br>        <br><br>

Horizon 发表于 2025-3-21 23:13:10

http://reply.papertrans.cn/67/6637/663635/663635_2.png

祖先 发表于 2025-3-22 01:15:46

http://reply.papertrans.cn/67/6637/663635/663635_3.png

FOLLY 发表于 2025-3-22 08:29:45

Semi Supervised Autoencoder(greedily) construct a stacked architecture. We demonstrate the efficacy our design in terms of both accuracy and run time requirements for the case of image classification. Our model is able to provide high classification accuracy with even simple classification schemes as compared to existing models for deep architectures.

令人作呕 发表于 2025-3-22 10:46:32

Sampling-Based Gradient Regularization for Capturing Long-Term Dependencies in Recurrent Neural Netwframework experimentally we use some special synthetic benchmarks for testing RNNs on ability to capture long-term dependencies. Our network can detect links between events in the (temporal) sequence at the range 100 and longer.

间接 发表于 2025-3-22 15:14:59

Modal Regression via Direct Log-Density Derivative Estimation good density estimator does not necessarily mean a good density derivative estimator. In this paper, we propose a novel method for modal regression based on . estimation of the log-density derivative without density estimation. Experiments show the superiority of our direct method over PMS.

严峻考验 发表于 2025-3-22 17:55:02

http://reply.papertrans.cn/67/6637/663635/663635_7.png

保留 发表于 2025-3-23 00:54:14

Nuclear Norm Regularized Randomized Neural Networkhidden layer to target) network. This is solved by imposing a nuclear norm penalty. The proposed technique is compared with the basic ELM and the Sparse ELM. Results on benchmark datasets, show that our method outperforms both of them.

小教堂 发表于 2025-3-23 05:19:19

A Theoretical Analysis of Semi-supervised Learningtively different dynamical behaviors. Furthermore, we propose a new algorithm that improves the generalization performance by switching the number of input vectors used in an update as the time step proceeds.

睨视 发表于 2025-3-23 06:50:00

http://reply.papertrans.cn/67/6637/663635/663635_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Neural Information Processing; 23rd International C Akira Hirose,Seiichi Ozawa,Derong Liu Conference proceedings 2016 Springer Internationa