人类
发表于 2025-3-28 14:34:40
Hua-Bao Ling,Dong Huangum nicht nur in der Gegenwart zu bestehen, s- dern auch um zukunftsfähig zu bleiben. Zum einen ist die Sicherung der Qualität ihrer Arbeit von wachsender Bedeutung, insbesondere in H- blick auf den härter werdenden internationalen Wettbewerb. So ist eine zeitgemäße, kundenorientierte Softwareentwick
红润
发表于 2025-3-28 18:48:07
http://reply.papertrans.cn/67/6637/663630/663630_42.png
conscience
发表于 2025-3-29 02:52:21
http://reply.papertrans.cn/67/6637/663630/663630_43.png
Admonish
发表于 2025-3-29 03:50:41
A Multi-Reservoir Echo State Network with Multiple-Size Input Time Slices for Nonlinear Time-Series per. The proposed model, Multi-size Input Time Slices Echo State Network (MITSESN), uses multiple reservoirs, each of which extracts features from each of the multiple input time slices of different sizes. We compare the prediction performances of MITSESN with those of the standard echo state networ
GRATE
发表于 2025-3-29 08:49:36
http://reply.papertrans.cn/67/6637/663630/663630_45.png
使高兴
发表于 2025-3-29 12:39:21
Continual Learning with Laplace Operator Based Node-Importance Dynamic Architecture Neural Networkimportant nodes according to the value of Laplace operator of each node. Due to the anisotropy of the important nodes, the sparse sub-networks for the specific task can be constructed by freezing the weights of the important nodes and splitting them with unimportant nodes to reduce catastrophic forg
异端邪说下
发表于 2025-3-29 16:53:21
http://reply.papertrans.cn/67/6637/663630/663630_47.png
GILD
发表于 2025-3-29 22:26:39
http://reply.papertrans.cn/67/6637/663630/663630_48.png
painkillers
发表于 2025-3-30 00:04:10
Random Neural Graph Generation with Structure Evolutionloss function. In recent years, studies of randomized neural networks have been extended towards deep architectures, opening a new research direction to the design of deep learning models. However, how the structure of the network can influence the model performance still remains unclear. In this pa
设想
发表于 2025-3-30 04:39:38
MatchMaker: Aspect-Based Sentiment Classification via Mutual Informationfficult to match a specific aspect with its opinion words since there are usually multiple aspects with different opinion words in a sentence. Many efforts have been made to address this problem, such as graph neural networks and attention mechanism, however come at the cost of the introduced extran