美丽动人 发表于 2025-3-21 16:38:15

书目名称Neural Information Processing影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0663572<br><br>        <br><br>书目名称Neural Information Processing影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0663572<br><br>        <br><br>书目名称Neural Information Processing网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0663572<br><br>        <br><br>书目名称Neural Information Processing网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0663572<br><br>        <br><br>书目名称Neural Information Processing被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0663572<br><br>        <br><br>书目名称Neural Information Processing被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0663572<br><br>        <br><br>书目名称Neural Information Processing年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0663572<br><br>        <br><br>书目名称Neural Information Processing年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0663572<br><br>        <br><br>书目名称Neural Information Processing读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0663572<br><br>        <br><br>书目名称Neural Information Processing读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0663572<br><br>        <br><br>

PAGAN 发表于 2025-3-21 23:25:28

http://reply.papertrans.cn/67/6636/663572/663572_2.png

搜集 发表于 2025-3-22 03:56:19

http://reply.papertrans.cn/67/6636/663572/663572_3.png

磨坊 发表于 2025-3-22 04:58:55

http://reply.papertrans.cn/67/6636/663572/663572_4.png

cyanosis 发表于 2025-3-22 12:48:45

0302-9743 e proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563  full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning,

Allowance 发表于 2025-3-22 16:45:16

Fuzzy Self-Organizing Incremental Neural Network for Fuzzy Clusteringd due to the self-adjusting nodes and edges which fit the learning data incrementally. A removal of nodes and edges promises the robustness of the network to the noisy data. Experiments on artificial and real-world data prove the validity of the clustering method.

注射器 发表于 2025-3-22 18:36:13

Topology Learning Embedding: A Fast and Incremental Method for Manifold Learninger way: it constructs a topology preserving network rapidly and incrementally through online input data; then with the Isomap-based embedding strategy, it achieves out-of-sample data embedding efficiently. Experiments on synthetic data and real-world handwritten digit data demonstrate that TLE is a promising method for dimensionality reduction.

inventory 发表于 2025-3-22 22:51:43

Using Flexible Neural Trees to Seed BackpropagationWe show that putting the two methods together can yield very good results. The FNT solution can be embedded into a larger neural network that is then optimized using backpropagation. The combination of the two methods outperforms either method alone.

FIR 发表于 2025-3-23 04:28:13

Improving Generalization Capability of Extreme Learning Machine with Synthetic Instances Generation based on 4 representative regression datasets of KEEL demonstrate that our proposed SIGELM obviously improves the generalization capability of ELM and effectively decreases the phenomenon of over-fitting.

ACME 发表于 2025-3-23 05:41:59

http://reply.papertrans.cn/67/6636/663572/663572_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Neural Information Processing; 24th International C Derong Liu,Shengli Xie,El-Sayed M. El-Alfy Conference proceedings 2017 Springer Interna