植物学
发表于 2025-3-23 13:46:04
http://reply.papertrans.cn/67/6629/662828/662828_11.png
circuit
发表于 2025-3-23 14:22:21
http://reply.papertrans.cn/67/6629/662828/662828_12.png
locus-ceruleus
发表于 2025-3-23 20:49:20
http://reply.papertrans.cn/67/6629/662828/662828_13.png
斥责
发表于 2025-3-23 22:55:21
http://reply.papertrans.cn/67/6629/662828/662828_14.png
哭得清醒了
发表于 2025-3-24 05:42:00
Network Performance and Fault Analytics for LTE Wireless Service Providers978-81-322-3721-1
愚笨
发表于 2025-3-24 06:35:00
s an up to date account of the literature on singular problems. One of our aims also is to present recent theory on singular differential and integral equations to a new and wider audience. The book presents a compact, thorough, and self-contained account for singular problems. An important feature
Angiogenesis
发表于 2025-3-24 14:19:42
Deepak Kakadia,Jin Yang,Alexander Gilguremipositone type problems, and multiplicity results for positone problems. In Section 2.10 we discuss in detail second order singular boundary value problems where our nonlinearity involves .′ and may change sign. An existence theory for second order singular problems involving nonlinear boundary da
豪华
发表于 2025-3-24 17:54:14
Deepak Kakadia,Jin Yang,Alexander Gilgurr integral equations and the non-linear singular integral equations. Chapter 2 provides a finite-part singular integral representation analysis in Lp spaces and in general Hilbert spaces. In the same Chapter are investigated all possible approximation methods for the numerical evaluation of the fini
露天历史剧
发表于 2025-3-24 22:39:04
http://reply.papertrans.cn/67/6629/662828/662828_19.png
放肆的你
发表于 2025-3-25 01:33:15
Deepak Kakadia,Jin Yang,Alexander Gilgur(y) is the unknown function. 1. The Abel equation x x) = l g (y) d 0 < a < 1. ( / Ct y, ( ) a X - Y 2. The Cauchy type integral equation b g (y) g(x)=/(x)+).. l--dy, a y-x where).. is a parameter. x Preface 3. The extension b g (y) a (x) g (x) = J (x) +).. l--dy , a y-x of the Cauchy equation. This