notable
发表于 2025-3-21 20:01:58
书目名称Nederlandse vertaling van de International Classification of Functioning, Disability and Health, Chi影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0662358<br><br> <br><br>书目名称Nederlandse vertaling van de International Classification of Functioning, Disability and Health, Chi影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0662358<br><br> <br><br>书目名称Nederlandse vertaling van de International Classification of Functioning, Disability and Health, Chi网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0662358<br><br> <br><br>书目名称Nederlandse vertaling van de International Classification of Functioning, Disability and Health, Chi网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0662358<br><br> <br><br>书目名称Nederlandse vertaling van de International Classification of Functioning, Disability and Health, Chi被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0662358<br><br> <br><br>书目名称Nederlandse vertaling van de International Classification of Functioning, Disability and Health, Chi被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0662358<br><br> <br><br>书目名称Nederlandse vertaling van de International Classification of Functioning, Disability and Health, Chi年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0662358<br><br> <br><br>书目名称Nederlandse vertaling van de International Classification of Functioning, Disability and Health, Chi年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0662358<br><br> <br><br>书目名称Nederlandse vertaling van de International Classification of Functioning, Disability and Health, Chi读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0662358<br><br> <br><br>书目名称Nederlandse vertaling van de International Classification of Functioning, Disability and Health, Chi读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0662358<br><br> <br><br>
Supplement
发表于 2025-3-21 22:48:00
http://reply.papertrans.cn/67/6624/662358/662358_2.png
Ornament
发表于 2025-3-22 03:35:09
http://reply.papertrans.cn/67/6624/662358/662358_3.png
tattle
发表于 2025-3-22 05:16:42
Nederlandse vertaling van de International Classification of Functioning, Disability and Health, Chi
NATAL
发表于 2025-3-22 10:30:07
r be absolutely admissible, we can say that . is analogous to the set of regular elements of the Lie algebra of . via its adjoint representation . The significance of . is that it permits us to formulate a conjectural Siegel formula in a precise, explicit form. (The restriction to . correspon
食料
发表于 2025-3-22 14:15:38
http://reply.papertrans.cn/67/6624/662358/662358_6.png
反感
发表于 2025-3-22 19:12:42
http://reply.papertrans.cn/67/6624/662358/662358_7.png
可憎
发表于 2025-3-22 22:16:12
Nederlands WHO-FIC Collaborating Centrer be absolutely admissible, we can say that . is analogous to the set of regular elements of the Lie algebra of . via its adjoint representation . The significance of . is that it permits us to formulate a conjectural Siegel formula in a precise, explicit form. (The restriction to . correspon
ARY
发表于 2025-3-23 02:37:36
Nederlands WHO-FIC Collaborating Centrer be absolutely admissible, we can say that . is analogous to the set of regular elements of the Lie algebra of . via its adjoint representation . The significance of . is that it permits us to formulate a conjectural Siegel formula in a precise, explicit form. (The restriction to . correspon
Obedient
发表于 2025-3-23 07:34:26
r be absolutely admissible, we can say that . is analogous to the set of regular elements of the Lie algebra of . via its adjoint representation . The significance of . is that it permits us to formulate a conjectural Siegel formula in a precise, explicit form. (The restriction to . correspon