incompatible 发表于 2025-3-21 18:55:34

书目名称Nearrings, Nearfields and K-Loops影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0662331<br><br>        <br><br>书目名称Nearrings, Nearfields and K-Loops影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0662331<br><br>        <br><br>书目名称Nearrings, Nearfields and K-Loops网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0662331<br><br>        <br><br>书目名称Nearrings, Nearfields and K-Loops网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0662331<br><br>        <br><br>书目名称Nearrings, Nearfields and K-Loops被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0662331<br><br>        <br><br>书目名称Nearrings, Nearfields and K-Loops被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0662331<br><br>        <br><br>书目名称Nearrings, Nearfields and K-Loops年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0662331<br><br>        <br><br>书目名称Nearrings, Nearfields and K-Loops年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0662331<br><br>        <br><br>书目名称Nearrings, Nearfields and K-Loops读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0662331<br><br>        <br><br>书目名称Nearrings, Nearfields and K-Loops读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0662331<br><br>        <br><br>

文件夹 发表于 2025-3-21 21:51:10

http://reply.papertrans.cn/67/6624/662331/662331_2.png

没花的是打扰 发表于 2025-3-22 02:36:17

Special Radicals of Ω-Groupsevich varieties. Characterizations of the radical and semisimple classes are obtained, similar to those obtained for rings by Gardner and Wiegandt, and Rjabuhin and Wiegandt, respectively. These give new results in the varieties of 0-symmetric near-rings, rings with involution and T-rings, inter alia.

畸形 发表于 2025-3-22 06:06:17

Seminearrings of Polynomials Over Semifields: A Note on Blackett’s Fredericton Papererating functions. It turns out that his main result can be extended to show that all polynomials over a commutative semifield with zero (for instance the non-negative rationals) can be decomposed via composition and multiplication to affine polynomials, in fact to a special class of affine polynomials.

畏缩 发表于 2025-3-22 08:53:44

Superprime Near-Rings the commutative to the non-commutative case, namely completely prime, is too strong since for example, maximal ideals in a ring with identity need not be completely prime; no matrix ring can be completely prime; the completely prime radical does not coincide with the nil radical on rings with dcc on left ideals.

CON 发表于 2025-3-22 14:41:35

978-94-010-7163-5Kluwer Academic Publishers 1997

Connotation 发表于 2025-3-22 20:18:02

Mathematics and Its Applicationshttp://image.papertrans.cn/n/image/662331.jpg

Dealing 发表于 2025-3-22 21:22:13

https://doi.org/10.1007/978-94-009-1481-0Abelian group; Algebra; Algebraic structure; Cohomology; Group theory; Volume; homomorphism; combinatorics

enhance 发表于 2025-3-23 05:26:33

A Note on Simple Composition RingsIn the present note we characterize finite, simple, zero-symmetric composition rings (., +, ·, ∘) with an identity with respect to o and . ≠ {0}.

Cloudburst 发表于 2025-3-23 06:01:35

The Cardinalities of the Endomorphism Near-Rings ,), AND , for All Groups , with |, 31In this note we present a table showing the cardinalities of the near-rings ., and . for all groups of order less than 32.
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Nearrings, Nearfields and K-Loops; Proceedings of the C Gerhard Saad,Momme Johs Thomsen Conference proceedings 1997 Kluwer Academic Publish