宗派 发表于 2025-3-21 17:58:02
书目名称Natural Language Processing and Chinese Computing影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0661815<br><br> <br><br>书目名称Natural Language Processing and Chinese Computing影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0661815<br><br> <br><br>书目名称Natural Language Processing and Chinese Computing网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0661815<br><br> <br><br>书目名称Natural Language Processing and Chinese Computing网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0661815<br><br> <br><br>书目名称Natural Language Processing and Chinese Computing被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0661815<br><br> <br><br>书目名称Natural Language Processing and Chinese Computing被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0661815<br><br> <br><br>书目名称Natural Language Processing and Chinese Computing年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0661815<br><br> <br><br>书目名称Natural Language Processing and Chinese Computing年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0661815<br><br> <br><br>书目名称Natural Language Processing and Chinese Computing读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0661815<br><br> <br><br>书目名称Natural Language Processing and Chinese Computing读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0661815<br><br> <br><br>下船 发表于 2025-3-21 22:28:07
http://reply.papertrans.cn/67/6619/661815/661815_2.pngHACK 发表于 2025-3-22 03:50:50
http://reply.papertrans.cn/67/6619/661815/661815_3.pnglabyrinth 发表于 2025-3-22 05:40:46
Natural Language Processing and Chinese Computing978-3-319-73618-1Series ISSN 0302-9743 Series E-ISSN 1611-3349Soliloquy 发表于 2025-3-22 11:32:57
http://reply.papertrans.cn/67/6619/661815/661815_5.png过剩 发表于 2025-3-22 15:38:20
Conference proceedings 2018ina, in November 2017.. The 47 full papers and 39 short papers presented were carefully reviewed and selected from 252 submissions. The papers are organized around the following topics: IR/search/bot; knowledge graph/IE/QA; machine learning; machine translation; NLP applications; NLP fundamentals; social networks; and text mining..rheumatism 发表于 2025-3-22 18:01:23
Jointly Modeling Intent Identification and Slot Filling with Contextual and Hierarchical Informationsults on different datasets show that the proposed models outperform joint models without either hierarchical or contextual information. Besides, finding the balance between two loss functions of two subtasks is important to achieve best overall performances.杂役 发表于 2025-3-22 22:28:37
http://reply.papertrans.cn/67/6619/661815/661815_8.pngpersistence 发表于 2025-3-23 04:17:22
First Place Solution for NLPCC 2017 Shared Task Social Media User Modelingproach results, including user-based collaborative filtering (CF) and social-based CF to predict the locations. Subtask two is to predict the users’ gender. We divided the users into two groups, depending on whether the user has posted or not. We treat this task subtask as a classification task. Our results achieved first place in both subtasks.MEET 发表于 2025-3-23 06:22:29
A Chinese Question Answering System for Single-Relation Factoid Questions are used to choose the final predicted answers. Our approach achieved the F1-score of 47.23% on test data which obtained the first place in the contest of NLPCC 2017 Shared Task 5 (KBQA sub-task). Furthermore, there are also a series of experiments which can help other developers understand the contribution of every part of our system.