hierarchy 发表于 2025-3-21 20:03:10

书目名称Natural Language Processing and Chinese Computing影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0661809<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0661809<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0661809<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0661809<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0661809<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0661809<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0661809<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0661809<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0661809<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0661809<br><br>        <br><br>

漂浮 发表于 2025-3-21 21:36:03

https://doi.org/10.1007/978-3-319-99501-4artificial intelligence; classification; data mining; HCI; human-computer interaction; information retrie

nephritis 发表于 2025-3-22 03:56:08

http://reply.papertrans.cn/67/6619/661809/661809_3.png

Pelvic-Floor 发表于 2025-3-22 07:20:01

http://reply.papertrans.cn/67/6619/661809/661809_4.png

移动 发表于 2025-3-22 11:07:46

http://reply.papertrans.cn/67/6619/661809/661809_5.png

indenture 发表于 2025-3-22 14:24:56

http://reply.papertrans.cn/67/6619/661809/661809_6.png

Admonish 发表于 2025-3-22 18:13:54

http://reply.papertrans.cn/67/6619/661809/661809_7.png

PANIC 发表于 2025-3-22 21:53:06

http://reply.papertrans.cn/67/6619/661809/661809_8.png

abstemious 发表于 2025-3-23 05:19:57

Which Embedding Level is Better for Semantic Representation? An Empirical Research on Chinese Phrased investigate the performance of the two basic units. Empirical results show that with all composing methods, word embedding out performs character embedding on both tasks, which indicates that word level is more suitable for composing semantic representation.

破布 发表于 2025-3-23 08:06:02

Improving Word Embeddings for Antonym Detection Using Thesauri and SentiWordNetord in SentiWordNet. We conduct evaluations on three relevant tasks, namely GRE antonym detection, word similarity, and semantic textual similarity. The experiment results show that our antonym-sensitive embedding outperforms common word embeddings in these tasks, demonstrating the efficacy of our methods.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Natural Language Processing and Chinese Computing; 7th CCF Internationa Min Zhang,Vincent Ng,Hongying Zan Conference proceedings 2018 Sprin