加冕 发表于 2025-3-21 19:45:54
书目名称Modular Representation Theory of Finite Groups影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0637895<br><br> <br><br>书目名称Modular Representation Theory of Finite Groups影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0637895<br><br> <br><br>书目名称Modular Representation Theory of Finite Groups网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0637895<br><br> <br><br>书目名称Modular Representation Theory of Finite Groups网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0637895<br><br> <br><br>书目名称Modular Representation Theory of Finite Groups被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0637895<br><br> <br><br>书目名称Modular Representation Theory of Finite Groups被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0637895<br><br> <br><br>书目名称Modular Representation Theory of Finite Groups年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0637895<br><br> <br><br>书目名称Modular Representation Theory of Finite Groups年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0637895<br><br> <br><br>书目名称Modular Representation Theory of Finite Groups读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0637895<br><br> <br><br>书目名称Modular Representation Theory of Finite Groups读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0637895<br><br> <br><br>雪上轻舟飞过 发表于 2025-3-21 20:24:27
http://reply.papertrans.cn/64/6379/637895/637895_2.pngLoathe 发表于 2025-3-22 03:21:15
https://doi.org/10.1007/978-1-4471-4832-6Brauer Correspondence; Burnside Ring; Cartan-Brauer Triangle; Representation Theory; finite GroupsBACLE 发表于 2025-3-22 06:05:44
Peter SchneiderProvides a concise introduction to modular representation theory.Is aimed at students at masters level.Compares group theoretic and module theoretic concepts.Includes supplementary material:interrupt 发表于 2025-3-22 11:36:05
http://reply.papertrans.cn/64/6379/637895/637895_5.pngsed-rate 发表于 2025-3-22 13:58:15
Textbook 2013 in two distinct flavours. In the ‘semisimple case‘ (for example over the field of complex numbers) one can use character theory to completely understand the representations. This by far is not sufficient when the characteristic of the field divides the order of the group..Modular Representation The山羊 发表于 2025-3-22 18:50:15
http://reply.papertrans.cn/64/6379/637895/637895_7.pnginhibit 发表于 2025-3-23 00:40:24
http://reply.papertrans.cn/64/6379/637895/637895_8.pngLimpid 发表于 2025-3-23 01:55:47
http://reply.papertrans.cn/64/6379/637895/637895_9.png吸引力 发表于 2025-3-23 05:49:53
Montgomery Arithmetic over Gaussian Integers,tographic system using Gaussian integers. Such a cryptographic system is presented in . Similarly, a Rabin cryptographic system was previously considered over Gaussian integers in . Moreover, coding applications over Gaussian integers could also benefit from