sprawl
发表于 2025-3-21 18:40:36
书目名称Mod Two Homology and Cohomology影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0635688<br><br> <br><br>书目名称Mod Two Homology and Cohomology影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0635688<br><br> <br><br>书目名称Mod Two Homology and Cohomology网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0635688<br><br> <br><br>书目名称Mod Two Homology and Cohomology网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0635688<br><br> <br><br>书目名称Mod Two Homology and Cohomology被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0635688<br><br> <br><br>书目名称Mod Two Homology and Cohomology被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0635688<br><br> <br><br>书目名称Mod Two Homology and Cohomology年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0635688<br><br> <br><br>书目名称Mod Two Homology and Cohomology年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0635688<br><br> <br><br>书目名称Mod Two Homology and Cohomology读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0635688<br><br> <br><br>书目名称Mod Two Homology and Cohomology读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0635688<br><br> <br><br>
者变
发表于 2025-3-21 23:55:51
http://reply.papertrans.cn/64/6357/635688/635688_2.png
Agnosia
发表于 2025-3-22 01:11:23
http://reply.papertrans.cn/64/6357/635688/635688_3.png
祖传
发表于 2025-3-22 08:09:03
https://doi.org/10.1007/978-3-319-09354-3Algebraic Topology; Cohomology; Homology
繁荣中国
发表于 2025-3-22 09:45:43
Jean-Claude HausmannPresents a simplified version of these important tools of algebraic topology.Provides a self-contained introduction to mod 2 (co)homology.Begins with basic principles and leads up to advanced topics t
BORE
发表于 2025-3-22 15:05:46
Textbook 2014od squares, as well as equivariant cohomology. Classical applications include Brouwer‘s fixed point theorem, Poincaré duality, Borsuk-Ulam theorem, Hopf invariant, Smith theory, Kervaire invariant, etc. The cohomology of flag manifolds is treated in detail (without spectral sequences), including the
高度表
发表于 2025-3-22 20:55:16
0172-5939 xed point theorem, Poincaré duality, Borsuk-Ulam theorem, Hopf invariant, Smith theory, Kervaire invariant, etc. The cohomology of flag manifolds is treated in detail (without spectral sequences), including the978-3-319-09353-6978-3-319-09354-3Series ISSN 0172-5939 Series E-ISSN 2191-6675
finale
发表于 2025-3-22 21:42:36
http://reply.papertrans.cn/64/6357/635688/635688_8.png
magenta
发表于 2025-3-23 04:55:22
http://reply.papertrans.cn/64/6357/635688/635688_9.png
增长
发表于 2025-3-23 08:05:26
http://reply.papertrans.cn/64/6357/635688/635688_10.png